
TI1600-b Multi-Agent Systemen

1 July 2011

This exam will test your knowledge and understanding of the material provided to you and presented in the
lectures, the book of Blackburn, Bos and Striegnitz Learn Prolog Now! (Chapters 1 to 5, Sections 9.1 &
9.2, Chapter 10, Section 11.2), as well as The Goal Programming Guide and the papers “Rules Capturing
Events and Reactivity” (Paschke and Boley) and “Common ground and coordination in joint activity” (Klein
et al.). It is not allowed to use materials such as books, papers or slides during the exam. You will have 3
hours (from 9 till 12) to complete the exam. You may provide your answers in Dutch as well as in English.
It has 7 questions, for a total of 100 points. Please don’t include irrelevant information: you will be marked
down for this. Before you hand in your answers, please check that you have put your name and student
number on top of every sheet you hand in.

Questions

Question 1 10 points
This assignment concerns rule-based programming.

(a) (5 points) Explain the difference between real-time and any-time rule systems.

Solution: Real-time reaction rules systems respond to events within stringent timing con-
straints, where any-time rule systems impose no constraints on the reaction time wrt to the
processed events.

(b) (5 points) What is the difference between forward-chaining and backward-chaining style execution
of rules in rule-based languages? Provide an example system for each style of execution.

Solution: Forward-chaining execution starts from facts and reasons towards conclusions that
may be derived from those facts (data-driven). Expert systems use forward-chaining. Backward-
chaining execution starts with a goal (goal-driven) and aims to reason in reverse from that goal
back to the facts that support the goal. Prolog is an example that uses backward-chaining.

Question 2 10 points
This assignment concerns Prolog.

(a) (10 points) Which of the following queries succeed? If a query succeeds, provide the unifier that
Prolog computes. For example, the query f(X) = f(a). succeeds, and Prolog computes the unifier
X=a.

1) Y is 2+3, Y > 2+2.
2) [[]|[]] = [].
3) [[1,2],a,X,[d]] = [A,_,[3,4]|B].
4) p(f(X),g([1|[2]],Y))=p(f([1,2]),g(X,a)).
5) p(f(X,Z),g(g(c),Y))=p(f(g(c),A),g(X,a)).

Solution:
1) Y = 5.
2) false.
3) X = [3, 4], A = [1, 2], B = [[d]].
4) X = [1, 2], Y = a.
5) X = g(c), Z = A, Y = a.

Question 3 10 points
This assignment concerns Prolog.

(a) (7 points) Write a (set of) clause(s) that define the predicate removeFirst(PairL,SecondL). such
that SecondL is a list obtained from the list of pairs PairL, by removing the first element of each pair.
For example, the query removeFirst([(1,2),(3,4),(5,6)],L). should yield L = [2, 4, 6]. Do
not use any auxiliary (=additional) predicates!

(b) (3 points) Write a (set of) clause(s) that define the predicate removeFirstandAdd(PairL,SecondL,Sum).
such that SecondL is a list obtained from the list of integer pairs PairL, by removing the first ele-
ment of each pair, and Sum is the summation of the elements in SecondL. For example, the query
removeFirstandAdd([(1,2),(3,4),(5,6)],L,Sum). should yield L = [2, 4, 6], Sum = 12. Do
not use any auxiliary (=additional) predicates!

Multi-Agent Systemen Exam, page 2 of 7 1 July 2011

Solution:
removeFirst([],[]).
removeFirst([(X,Y)|T1],[Y|T2]) :- removeFirst(T1,T2).

removeFirstandAdd([],[],0).
removeFirstandAdd([(_,Y)|T1],[Y|T2],Sum) :- removeFirstandAdd(T1, T2, SumSub),

Sum is Y + SumSub.

Multi-Agent Systemen Exam, page 3 of 7 1 July 2011

Question 4 10 points
This assignment concerns Prolog. Consider the following program:

myMember(X,[X|_]) :- f(X).
myMember(X,[_|T]) :- myMember(X,T).

a(a).
a(b).
a(3).
b(b).
f(X):- a(X), not(b(X)).

When posing the query myMember(X,[a,b,3]). to Prolog, the following trace is produced (only the first
part is displayed here):

[trace] ?- myMember(X,[a,b,3]).
Call: (7) myMember(_G392, [a, b, 3]) ? creep
Call: (8) f(a) ? creep
Call: (9) a(a) ? creep
Exit: (9) a(a) ? creep

^ Call: (9) not(b(a)) ? creep
Call: (10) b(a) ? creep
Fail: (10) b(a) ? creep

^ Exit: (9) not(user:b(a)) ? creep
Exit: (8) f(a) ? creep
Exit: (7) myMember(a, [a, b, 3]) ? creep

X = a ;
Redo: (7) myMember(_G392, [a, b, 3]) ? creep
Call: (8) myMember(_G392, [b, 3]) ? creep
Call: (9) f(b) ? creep
Call: (10) a(b) ? creep
Exit: (10) a(b) ? creep

^ Call: (10) not(b(b)) ? creep
Call: (11) b(b) ? creep
Exit: (11) b(b) ? creep

^ Fail: (10) not(user:b(b)) ? creep
Fail: (9) f(b) ? creep
Redo: (8) myMember(_G392, [b, 3]) ? creep
Call: (9) myMember(_G392, [3]) ? creep
Call: (10) f(3) ? creep

....

(a) (5 points) In the text below that explains the trace, choose from the following terms to complete
the text. Terms should be inserted in the appropriate slots, where each term can be used zero or
more times:

• backtracking
• breadth-first search
• depth-first search
• linear search
• negation as failure

Prolog applies __________ (1) and thus unifies myMember(X,[a,b,3]) with the head of
the first clause in the program, resulting in the unification of _G392 with a. In order

Multi-Agent Systemen Exam, page 4 of 7 1 July 2011

to prove f(a), Prolog unifies this goal with the last rule in the program. Prolog ap-
plies __________ (2) and thus tries to prove a(a), which succeeds, before trying to prove
not(b(a)). The goal not(b(a)) succeeds because Prolog uses __________ (3), which means
that not(b(a)) succeeds if b(a) fails. Prolog returns the unifier X=a. The user presses ;,
which makes Prolog apply __________ (4), and thus Prolog unifies myMember(X,[a,b,3])
with the head of the second clause. Prolog calls myMember recursively, and unifies the
goal myMember(_G392, [b, 3]) with the first clause in the program. Prolog tries to prove
f(b) which fails, which makes Prolog apply __________ (5), resulting in unification of
myMember(_G392, [b, 3]) with the second clause in the program.

Solution:

1. linear search

2. depth-first search

3. negation as failure

4. backtracking

5. backtracking

(b) (5 points) Assume now that the first clause of the program is changed to:
myMember(X,[X|_]) :- f(X),!.

Is the cut (!) in this modified program a green cut or a red cut? Explain your answer by explaining
the meaning of cut and explaining the difference between a green and red cut.

Solution: The cut prevents backtracking once Prolog passes it when proving the goals in the
body of a rule. This is a red cut, because the behavior of the program changes if the cut is
removed. For example, if the cut is removed and the query myMember(X,[a,b,3]) is posed,
Prolog returns X=a and X=3, while Prolog returns only X=a when the cut is present.

Question 5 10 points
This question concerns agent-oriented programming.

(a) (5 points) Explain the difference between the a-goal and the goal operator.

Solution: The a-goal operator is defined in terms of the goal and the bel operator as follows:
a-goal(ϕ) = goal(ϕ), not(bel(ϕ). Informally, the goal operator only checks whether ϕ
follows from the goals in the agent’s goal base whereas the a-goal operator also checks that the
agent does not believe that ϕ is the case. Because of this additional condition a-goal defines
achievement goals, goals that are still to be achieved.

(b) (5 points) Consider the action rule: if bel(safe(X,Y)) then turn(right) + forward. The
turn action updates a predicate facing(Dir) and the forward action updates a predicate at(X,Y)
in the agent’s belief base. Assume that in the current state the agent is in the action forward will
fail. What will happen if the condition bel(safe(X,Y)) holds for some instantiation and the rule
is fired?

Solution: The action turn(right) will be executed and the predicate facing will be updated
in the agent’s belief base. Even though the forward action will fail the predicate at is also
updated (as this is an internal update action performed by the agent).

Multi-Agent Systemen Exam, page 5 of 7 1 July 2011

Question 6 40 points
This question concerns the agent programming language Goal. Consider the agent program below.

(a) (10 points) Explain which action(s) that the Goal agent may perform next, given the agent program
listed below.

Solution: The Goal agent can perform the actions load(p1), load(p2), and load(p3).

(b) (10 points) Complete the action specification for the action unload(P) for unloading a package P
from the truck. A package, of course, can only be unloaded if it is in the truck and will be located
where the truck is after unloading. Only use the predicates that are already available in the given
agent program. Motivate the pre- and postcondition that you have given.

Solution:
unload(P){
pre{ in(P,truck), loc(truck,X) }
post{ loc(P,X), not(in(P,truck)) }

}

The precondition contains loc(truck,X) to retrieve the current position of the truck in order
to be able to insert the location of the unloaded package in the post-condition. The package no
longer is in the truck after unloading so this fact is removed (negated) in the post-condition.

(c) (5 points) Explain why the agent will not be able to achieve either of its goals.

Solution: After loading all packages into the truck, the agent will continuously fire the second
rule and perform the goto action. The reason is that the goto action is also performed if the
truck has already gone to a location because the precondition of goto does not check whether
the truck is already at the location it is supposed to go to.

(d) (10 points) Explain how you would modify the main module of the agent program to ensure that
the agent will achieve its goals. Provide a modification that is as minimal as possible.

Solution: Simply exchange the order of the second and the third rule. (Another solution would
be to add the condition not(X=Y) to the belief condition of the second rule but this condition
would better be added to the precondition of the action goto.)

(e) (5 points) Assume that moving the truck with more packages is more costly than moving the truck
with less packages and the truck driver wants to minimize costs. How would you change the agent
program to optimize the behaviour of the transportAgent agent? Explain which Goal constructs,
if any, you will use to modify the agent code and why.

Solution: One way to optimize the agent’s behavior is to deal with the delivery order goal of
one customer at a time. A module can be added to select one the goals and focus on that goal
only. To create this focus, a focus option can be used in combination with the module.

main: transportAgent{
knowledge{
ordered(C,P) :- order(C,Y), member(P,Y).
loaded_order(C) :- order(C,O), loaded(O).
loaded([P]) :- in(P, truck).
loaded([P|L]) :- in(P,truck), loaded(L).

Multi-Agent Systemen Exam, page 6 of 7 1 July 2011

empty :- not(in(P,truck)).
delivered_order(C) :- order(C,O),loc(C,X),orderloc(O,X).
orderloc([H|T], X) :- loc(H,X), orderloc(T,X).
orderloc([], X).

}
beliefs{
home(a).
loc(p1,a). loc(p2,a). loc(p3,a). loc(p4,c).
loc(truck,a).
order(c1,[p1,p2]). order(c2,[p3,p4]).
loc(c1,b). loc(c2,c).

}
goals{
delivered_order(c1). delivered_order(c2).

}
main module{
program{
if goal(delivered_order(C)), bel(ordered(C, P), loc(C, X)),
not(bel(in(P, truck))), not(bel(loc(truck, X))) then load(P).

if goal(delivered_order(C)), bel(loc(truck, X), loaded_order(C), loc(C, Y))
then goto(Y).

if goal(delivered_order(C)), bel(loc(truck, X), loc(C, X), in(P, truck), ordered(C, P))
then unload(P).

if bel(home(X)) then goto(X).
}

}
actionspec{
load(P){
pre{ loc(truck,X), loc(P,X) }
post{ in(P,truck), not(loc(P,X)) }

}
goto(Y){
pre{ loc(truck,X) }
post{ loc(truck,Y), not(loc(truck,X))}

}
unload(P){
pre{ ... }
post{ ... }

}
}

}

Question 7 10 points
This question concerns joint activity. In the paper Common Ground and Coordination in Joint Activity
by Klein et al., three dimensions of joint activity are presented: criteria for joint activity, requirements
for joint activity, and choreography of joint activity.

(a) (6 points) Which two criteria for joint activity are defined in the paper? Explain in a few sentences
what they mean.

(b) (2 points) A requirement for joint activity is common ground. Explain in a few sentences what is
meant by common ground and why it is a requirement for joint activity.

(c) (2 points) Give two examples of types of organizational structures.

Multi-Agent Systemen Exam, page 7 of 7 1 July 2011

Solution: (a) intention and interdependence (b) Common ground refers to the pertinent mutual
knowledge, mutual beliefs and mutual assumptions that support interdependent actions in some
joint activity. Common ground permits people to use abbreviated forms of communication and still
be reasonably confident that potentially ambiguous messages and signals will be understood. (c)
hierarchy and network/peer-to-peer

End of exam

