Example Exam for TI1600-A Multi-Agent Systemen

6 April 2010

This exam will test your knowledge and understanding of the material provided to you and presented in the
lectures (slides), the book of Blackburn, Bos and Striegnitz Learn Prolog Now! (Chapters 1 to 5, Sections
9.1 & 9.2, Chapter 10, Section 11.2), as well as The GOAL Programming Guide. It is not allowed to use
materials such as slides during the exam. You will have 3 hours (from 9 till 12) to complete the exam. You
may provide your answers in Dutch as well as in English. It has 6 questions, for a total of 100 points. Please
don’t include irrelevant information: you will be marked down for this. Before you hand in your answers,
please check that you have put your name and student number on top of every sheet you hand in.



Questions

Question 1 15 points
This assignment concerns Prolog.

(a) (10 points) Write a (set of) clause(s) that define the predicate remove(X,L1,L2) such that L2
is a list obtained from the list L1 by removing all occurrences of X. For example, the query
remove(3,[1,3,2,3,4],L2). should yield L2 = [1, 2, 4] and remove(3,[1,2,4],L2). should
yield L2 = [1, 2, 4].

Solution:
remove(_, [1,[1).
remove (X, [X|T],L) :- remove(X,T,L).
remove (X, [YIT], [YIL]) :- not(X=Y), remove(X,T,L).

(b) (5 points) Modify the (set of) clause(s) that define the predicate remove (X,L1,L2), such that L2
is a list obtained from the list L1 by removing only the first occurrence of X. If X does not occur in
L1, nothing should be removed. For example, the query remove (3, [1,3,2,3,4],L2). should yield
L2 = [1, 2, 3, 4] and remove(3,[1,2,4],L2). should yield L2 = [1, 2, 4].

Solution:
remove (_, [1,[]).
remove (X, [X|L],L) :- 1I.
remove (X, [Y|T], [YIL]) :- not(X=Y), remove(X,T,L).

Question 2 15 points
This assignment concerns Prolog. Binary trees are trees where all internal nodes have exactly two
children. The smallest binary trees consist of only one leaf node. We will represent leaf nodes as
leaf (Int), where Int is an integer. That is, leaf nodes have integer labels. For example, leaf (1) and
leaf (5) are leaf nodes, and therefore small binary trees. Given two binary trees B1 and B2 we can
combine them into one binary tree using a predicate tree/2 as follows: tree(B1,B2).

So, from the leafs 1eaf (1) and leaf (5) we can build the binary tree tree(leaf (1) ,leaf (5)), from the
binary trees tree(leaf(l),leaf(5)) and 1leaf(3) we can build the binary tree
tree(tree(leaf (1) ,leaf(5)),leaf(3)), from the binary trees tree(leaf(l),leaf(5)) and
tree(leaf(7),leaf(8)) we can build the binary tree tree(tree(leaf(1),leaf(5)),
tree(leaf (7),leaf(8))), etc.

(a) (15 points) Write a (set of) clause(s) that define the predicate sumTree (Tree,Sum) such that Sum is
the sum of the labels of the leafs of the tree Tree. For example, the query
sumTree (tree(tree(leaf (1) ,leaf(5)),leaf(3)),X). should yield X = 9.

Solution:
sumTree (leaf (X),X).
sumTree(tree(T1,T2),Sum) :- sumTree(T1,Suml),
sumTree (T2, Sum?2) ,
Sum is Suml + Sum?2.




MULTI-AGENT SYSTEMEN Exam, page 2 of 6 6 April 2010

Question 3 10 points
This assignment concerns Prolog. Assume we have a database of results of Unreal Tournament matches
played by various teams. The pairings of which team played against which other were not arranged in
any systematic way, so each team just played some other team(s). The results are in the program repre-
sented as facts like won(teaml,team2), won(team3,teaml), won(team4,team2), where won(T1,T2)
represents that team T1 won the match (and team T2 lost). In this assignment, we consider a set of
clauses that should define a predicate class(Team,Category) that ranks teams into categories. We
have just three categories:

e great: every team that won all its games
e ok: any team that won some games and lost some

e improvable: any team that lost all its games

For example, given the results stated above, team3 and team4 are great, teaml is ok, and team2 is
improvable.

The following knowledge base is a faulty implementation of the predicate class/2.

won (teaml,team?2) .
won(team3,teaml).
won(team4,team?) .

class(X,0k) :- won(X,_), won(_,X).
class(X,great) :- not(won(_,X)), won(X,_).
class(X,improvable) :- won(_,X), not(won(X,_)).

The query class(X,great) should yield X = team3 and X = team4, but this knowledge base yields
false. The following trace is produced:

[trace] 7- class(X,great).
Call: (7) class(_G335, great) 7 creep

~ Call: (8) not(won(_G403, _G335)) 7 creep
Call: (9) won(_G403, _G335) 7 creep
Exit: (9) won(teaml, team2) 7 creep

" Fail: (8) not(won(_G403, _G335)) 7 creep
Redo: (7) class(_G335, great) 7 creep

false.

The queries class(team3,great) . and class(team4,great). do correctly yield true.

(a) (5 points) Explain why this program yields the wrong answer when posing the query
class(X,great) .

(b) (5 points) Propose a modification of the program to yield the correct solution.

Solution: Prolog uses negation as failure, which means that the goal not (won(TeamA, TeamB) )
fails if won(TeamA,TeamB) succeeds. If TeamB is not instantiated, won (TeamA, TeamB) will suc-
ceed if Prolog can derive won(TeamA,TeamB) for some instantiation of TeamA and TeamB (in this
case won(teaml, team2) asindicated by the trace), and consequently the goal not (won (TeamA , TelamB) )
fails. If the clauses are swapped, X is instantiated using the first goal (e.g., X = team3), and
then not (won(TeamA,team3)) succeeds.
yA

classCorrect (X,0k) :- won(X,_), won(_,X).

classCorrect(X,great) :- won(X,_), not(won(_,X)).

classCorrect (X,improvable) :- won(_,X), not(won(X,_)).




MULTI-AGENT SYSTEMEN Exam, page 3 of 6 6 April 2010

Question 4 10 points
This question concerns the agent programming language GOAL.

(a) (5 points) Explain the difference between the goal (<fact>), a-goal (<fact>), and goal-a(<fact>)
operators.

Solution: The goal (<fact>) operator holds if the <fact> follows from one of the goals in the
goal base (in combination with the knowledge base), a-goal(<fact>) operator holds if <fact>
follows from one of the goals but is not believed to be true by the agent, and goal-a(<fact>)
operator holds if <fact> follows from one of the goals and is also believed to be true by the
agent.

(b) (5 points) Explain the difference between executing a rule of the form if bel(p(X)) then insert(r(X))
and a rule of the form forall bel(p(X)) then insert(r(X)). Also explain what difference it
makes to put either of these rules in the program section of the main module or in that of the
event module.

Solution: The differences are that

e all instances of action rules of the form forall bel(p(X)) then insert(r(X)) that
make p(X) true are executed while only one instance is executed for rules of the form
if bel(p(X)) then insert(r(X)).

e the order of the rules in the program section of the main module by default is linear
which means that the first applicable rule is fired whereas in the event module by default
all applicable rules are fired.




MULTI-AGENT SYSTEMEN Exam, page 4 of 6 6 April 2010

Question 5

25 points

This question concerns the agent programming language GOAL.

main: deliveryAgent {

knowledge {
ordered(C,P) :- order(C,Y), member(P,Y).
loaded_order(C) :- order(C,0), loaded(0).
loaded([P]) :- in(P, truck).
loaded([P|L]) :- in(P,truck), loaded(L).
empty :- not(in(P,truck)).
packed :- setO0f(P,in(P,truck),L), length(L,X), X>=2.
delivered_order(C) :- order(C,0),loc(C,X),orderloc(0,X).
orderloc([HIT], X) :- loc(H,X), orderloc(T,X).
orderloc([], X).

}
beliefs {
home(a). loc(pl,a). loc(p2,a). loc(p3,a). loc(pd,a). loc(truck,a).
order(cl, [p1,p2]). order(c2, [p3,p4]).
loc(cl,b). loc(c2,c).
}
goals {
delivered_order(cl). delivered_order(c2).
}

main module{
program{
if bel(home(X)) then goto(X).

3

if goal(delivered_order(C)) then deliverOrder .

module deliverOrder[focus=select]{
program {

3

}

if goal(delivered_order(C)), bel(ordered(C, P), loc(C, X)),
not(bel(in(P, truck))), not(bel(loc(truck, X))) then load(P).

if goal(delivered_order(C)), bel(loc(truck, X), loaded_order(C), loc(C, Y))
then goto(Y).

if goal(delivered_order(C)), bel(loc(truck, X),loc(C, X),in(P, truck),ordered(C, P))
then unload(P).

if bel(empty, home(Y)) then goto(Y).

actionspecq{
load(P){

}

}

pre{ not(packed), loc(truck,X), loc(P,X) }
post{ in(P,truck), not(loc(P,X)) }

goto(Y){

}

pre{ loc(truck,X), not(X=Y) }
post{ loc(truck,Y), not(loc(truck,X))}

unload (P){

}



MULTI-AGENT SYSTEMEN Exam, page 5 of 6 6 April 2010

}

(a) (10 points) Explain which actions the GOAL agent may perform nezt, given the agent program
listed above.

Solution: The GOAL agent can enter the module deliverOrder (in two ways), and then will
perform either load(pl), load(p2), load(p3), or load(p4d).

(b) (10 points) Complete the action specification for the action unload(P) for unloading a package P.
Only use the predicates that are already available in the given agent program.

Solution:
unload(P){
pre{ in(P,truck), loc(truck,X) }
post{ loc(P,X), not(in(P,truck)) }
}

(¢) (5 points) Explain which goals will be part of the attention set if the module is activated given the
mental state that is part of the agent program above.

Solution:
The attenion set consists either of the goal delivered_order(cl) or delivered_order(c2).

Question 6 25 points
This question concerns the agent programming language GOAL.

main: coffeeMaker {
knowledge {
requiredFor (coffee, water).
requiredFor (coffee, grounds).
requiredFor (espresso, coffee).
requiredFor (grinds, beans).
canMakeIt(M, P) :- canMake(M, Prods), member (P, Prods).

}
beliefs {
have(water) . have(beans).
canMake (maker, [coffee, espresso]).
}
goals {
have (coffee).
}
main module{
program {
% if we need to make something, then make it (the action’s precondition
% checks if we have what it takes, literally)
if goal(have(P)) then make(P).
}
}

event module{

}

actionspec {



MULTI-AGENT SYSTEMEN Exam, page 6 of 6 6 April 2010

make (Prod) {
pre { forall(requiredFor(Prod, Req), have(Req)) }
post { have(Prod) }

(a) (15 points) Provide a rule that will make the agent above ask (send a question) any other agent
what it can make, but only asks this if the agent does not already know what the other agent can
make. Only use the predicates that are already available in the given agent program.

Solution:

if bel(agent(A), not(me(A)), not(canMake(A, _)))
then sendonce(A, 7canMake(A, _)).

(b) (5 points) Explain in which module you would insert the rule you provided.

(c¢) (5 points) Explain the difference between the three possible moods of a message. That is, explain
the difference between an agent agent1 that performs send (agent2, :<fact>), send(agent2, 7<fact>),
and send(agent2, !<fact>).

Solution: The different moods represent different message types: : represents indicative mes-
sage types (e.g. ”The door is open”), ? represents interrogative message type (e.g. ”Is the door
open?”), and ! represents imperative message type (”Open the door”). The main difference is
the way these messages are stored (both by the sending and the receiving agent). They result
respectively in the following facts being inserted into the mailbox:

e sent(agent2, <fact>),

e sent(agent2, int(<fact>)),

e sent(agent2, imp(<fact>)),

e received(agentl, <fact>),

e received(agentl, int(<fact>)),

e received(agentl, imp(<fact>)).

End of exam



