
T I 1600-A Multi-Agent Systemen

28 June 2013

This exam wil l test your knowledge and understanding of the material provided to you and presented in
the lectures, the book of Biackburn, Bos and Striegnitz Learn Prolog Now! (Chapters 1 to 5, Section 10.3,
Section 11.2), as well as The G O A L Programming Guide. I t is not allowed to use materials such as books,
papers or slides during the exam. You wil l have 3 hours (from 9 t i l l 12) to complete the exam. You may
provide your answers in Dutch as well as in English. I t has 8 questions, for a total of 80 points. Please don't
include irrelevant information: you wi l l be marked down for this. Before you hand in your answers, please
check that you have put your name and student number on top of every sheet you hand in.

Questions
Question 1 10 points

This assignment concerns Prolog.

(a) (10 points) Which of the following c|ueries succeed, which fail, and which give rise to an error? I f
a query succeeds, provide the unifier that Prolog computes (if i t is non-empty). For example, the
c(uery f (X) = f (a) . succeeds, and Prolog computes the unifier X=a; the query 5 = 5 succeeds, and
the unifier is empty (i.e., Prolog returns t rue) .

1) p (a (A) , f (a , Y) , g (b)) = p(X, f (a , c) , g (Z)) .
2) [[1 , 2 , 3] I []] = [1 , 2 , 3] .
3) [10, f (a) , [] , [3]] = [_ , X , Y | Z] .
4) X > 6, X i s 3-1-4.
5) 5 = X + 4.

This assignment concerns Prolog.

(a) (5 points) Write a set of clauses that define the predicate f a c t o r i a l (N , F) which succeeds i f N is
a non-negative integer and F is the factorial of N, i.e., F = Nl. ("N faculteit" in Dutch). The factorial
of 0 is 1. For example, the cperj ' f a c t o r i a l (3 , F) should yield F = 6, as 3 * 2 * 1 * 1 = 6,
and f a c t o r i a l (5 ,F) should yield F = 120, as 5 * 4 * 3 * 2 * 1 * 1 = 120. Do not define any
auxiliary (=additional) predicates!

Question 3 10 points
This assignment concerns Prolog.

(a) (10 points) Write a set of clauses that define the predicate removeNil(L,R) which succeeds i f L
is a list and R is a list that is the same as L except that all instances of the item [] (the empty
list) have been removed at all levels of L. That is, if elements of L are lists, the item [] should
also be removed from them, etc. For example, the query removeNiK [1 , 2 , [] ,3] ,R) should yield
R = [1 , 2 , 3] , and the query removeNiK [1 , 2 , [] , [a, [] , b]] ,R) should yield R = [1 , 2 , [a , b]] .
Define the predicate removeNil(L ,R) by defining a clause for each of the following cases:

1. base case;

2. the first element of L is the empty list;

3. the first element of L is not a list; use the Prolog built-in predicate i s _ l i s t (X) which succeeds
if X is a list, and fails otherwise;

4. the first element of L is a list wi th at least one element.

Do not define any otiier clauses!

Question 4 9 points
This assignment concerns Prolog. Consider the following program (the numbers indicate clause numbers,
for ease of reference):

1. invented.(edison, l i g h t b u l b) .
2. invented(colmeraurer ,pro log) .

3. i q (e i n s t e i n , 2 1 0) .
4. iq(edison,160) .
5. iqCwaldorf ,90) .

Question 2 5 points

6. genius(Person) : -
iqCPerson,IQ) ,
IQ > 150.

M U L T I - A G E N T S Y S T E M E N Exam, page 2 of 6 28 Jmie 2013

7. genius(Person) : -
invented(Person,_) .

(a) (2 points) Wlien we pose the query genius (G) . what is tire first answer that Prolog produces?

(a) Person = edison

(b) Person = e i n s t e i n

(c) G = edison

(d) G = e i n s t e i n

(e) f a l s e

(b) (3 points) Explain your answer to the previous question in a few sentences, referring to the clauses
in the program using the clause numbers.

(c) (4 points) Give all answers that Prolog produces if we pose the query genius (G) . and cycle through
all answers by pressing ';' after each answer, in the right order.

Question 5 6 points

(a) (3 points) Agents can be applied naturally for controlling non-player characters such as bots in a
capture-the-fiag scenario in the game U N R E A L T O U R N A M E N T . In this scenario multiple bots form a
team that has the objective of capturing the flag of a competing team. Each team needs to defend
its own flag and can ki l l bots of the other team by shooting them. Explain why you think software
agents can be naturally apphed for controlhng such bots (use 5 sentences at most).

(b) (3 points) A software agent is usually connected to an environment and can receive percepts from
its environment. Explain the difference between a "send always" and a "send-on-change" percept
and provide an example of a "send-on-change" type of percept (use 5 sentences at most).

Question 6 10 points
This question concerns the agent programming language GoAL.

(a) (3 points) List three mental state operators that can be used in the conditions of a rule in a GoAL
agent program to inspect the mental state of that agent.

(b) (4 points) Provide rules for processing the "send-on-change-with-negation" percept in(RoomlD).

(c) (3 points) Explain the difference between the linear, linearall, and random rule evaluation orders.

M U L T I - A G E N T S Y S T E M E N Exam, page 3 of 6 28 Jmie 2013

Question 7 18 points
Tliis question concerns the agent programming language G O A L . Consider the agent program below.
This program is written for a robot that gets beers for his owner from the fridge. Its main goal in life is
to get and serve beers. The robot can open a closed fridge if i t is at the fridge and not holding a beer.
I t can close an open fridge i f i t is at the fridge. I t can grab a beer from the fridge by the get action if
it is not holding a beer already, the fridge is open, and the robot is at the fridge. The robot can hand
over a beer to its owner if i t is holding beer and close to (at) its owner. Finally, i t can move towards a
place. Whenever the robot is at its owner, i t can see whether its owner has a beer or not. In that case i t
receives a corresponding percept, otherwise the robot does not get any percepts. You may assume that
there are always beers in the fridge ready for the robot to serve. In order for the robot to perform its
job correctly and safe energy, i t must always ensure that the fridge is closed i f the robot is not at the
fridge.

(a) (4 points) Explain which action(s) selected by rules from the m a i n module the G O A L agent may
perform next, given the agent program listed below. Only provide actions that it can perform in
the mental state that results from processing once the percepts the agent receives by means of the
event module. You may assume that the owner does not have beer and the agent wil l receive the
percept percept (not (ownerhasbeer)). Note that actions refer to built-in G O A L actions such as
In se r t as well as environment actions specified in the program's action specification section.

(b) (4 points) I f the robot is not holding a beer and perceives that its owner already has a beer, wi l l
the robot still get a beer from the fridge? Explain your answer.

(c) (6 points) What is the default exit option of a module? I f we would remove the option ex i t=noac t ion
from the getbeer module, would the robot still serve beers to its owner? Would the robot still
perform correctly? Explain your answer.

(d) (4 iDoints) Complete the action specification for the action close for closing the fridge. Only use
predicates that are already available in the given agent program. Motivate the pre- and postcondi­
tion that you have given.

M U L T I - A G E N T S Y S T E M E N Exam, page 4 of 6 28 Jmie 2013

i n i t module {
belief s-{

fridgeclosed. place(owner). place(fridge). at(owner).

>

actionspec{
open{

pre-[not(holdingbeer), at(fridge), fridgeclosed >
post{ not(fridgeclosed) }

>

close{
pre{ ... >
post{ ... }

>

get{
pre{ not(holdingbeer), at (f r i d g e) , not(fridgeclosed) }
post-[holdingbeer >

>

hand_over{
pre{ holdingbeer, at(owner) >
post{ not(holdingbeer) }

>

move_towards(Place) {
pre{ place(Place), at(OldPlace) >
post-C not(at(01dPlace)) , at (Place) >

>

>

main module {.
program[order=random] {

i f bel(not(holdingbeer)) then adopt(holdingbeer) + adopt(servebeer).
i f a-goal(holdingbeer) then getbeer.
i f bel(holdingbeer), a-goal(servebeer) then servebeer.

>

}

module getbeer [exit=noaction] {
program {.

i f bel(not(at(fridge))) then move_towards(fridge).
i f bel(fridgeclosed) then open,
i f bel(not(holdingbeer)) then get.
i f bel(not(fridgeclosed)) then close.

}

}

module servebeer [exit=noaction]{
program {

i f bel(not(at(owner))) then move_towards(owner).
i f bel(not(ownerhasbeer)) then hand_over.

>

}

event module {
program -[

i f bel(percept(not(ownerhasbeer))) then deleteC ownerhasbeer).
i f bel(percept(ownerhasbeer))) then insert(ownerhasbeer).

>

}

M U L T I - A G E N T S Y S T E M E N Exam, page 5 of 6 28 Jmie 2013

Question 8 12 points
Tliis question concerns cooperative teams of robots in the BlocksWorld for Teams (BW4T) environment
(see figure) that want to perform the BW4T task. BW4T is a virtual ofSce-like environment that consists
of rooms in which colored blocks are hidden, and a drop zone where blocks can be delivered. The BW4T
task is to deliver a sequence of colored blocks in a particular order (an example task is illustrated at the
bottom of the figure). The basic actions that agents in the BW4T world can perform are to move, to
pick up blocks, and to drop blocks. An agent can only carry one block at a time. Agents know which
rooms there are and which colors need to be delivered in what order, but they can only see blocks and
their colors when they are inside the room where these blocks are. At most one agent (robot) can be in
a room at any time (entrance to a room is blocked as soon as one robot enters a room). Agents camiot
see each other. To deliver a block successfully, an agent has to find a block of the right color, go to
the block, pick i t up, go to the drop zone and drop the block there. Performance on the BW4T task is
measured by the time needed to complete the task. The task is completed at the moment that all blocks
needed have been delivered (dropped) in the right order in the drop zone. You may assume that there
are always sufhciently many blocks present in the environment to achieve the B W 4 T task.

Suppose there are two robots trying to solve the BW4T task together. Also suppose that both robots
execute exactly the same strategy (program); the programs do not depend on any information that
difïerentiates the robots such as names. This program makes a robot adopt a (single!) goal to go to and
pick up a block of the right color if i t is not yet holding a block and i t knows where i t can pick up such
a block. A block is of the right color if i t matches the color of the block that is needed next according
to the BW4T task. I f a robot has such a goal, i t wi l l perform the right actions to achieve it (and drop
the goal only if i t knows that i t cannot achieve its goal anymore or has achieved the goal). Only if a
robot does not know where to find a block of the right color, i t wil l randomly visit a room that i t has
not visited before. Otherwise it wi l l do nothing. Finally, each robot always immediately communicates
its beliefs about the location of blocks to the other robot when it receives new information about the
location of blocks. They do not share any other information.

Robots need to coordinate to avoid duplicating effort. Here we mean by duplication of efïort two things:
(i) both robots dupficate effort if both carry a block where only one would have been sufficient, and
(ii) both robots visit one and the same room whereas only one robot visiting that room would have
been sufficient. We do not count under any circumstances two robots walking one and the same path as
duplicate effort. In this question we are looking for conditions where coordination can be minimal.

(a) (6 points) Specify a sufficient and necessaiy constraint on the number of rooms present in the
BW4T environment which ensures that the two robots wil l never duplicate effort. That is, provide
a constraint on the number of rooms such that the robots never wil l t ry to pick up the same
block and waste time in doing so. Argue that your constraint is (i) sufficient and (ii) necessary.
A constraint is sufficient in case the robots in all situations that satisfy the constraint wi l l never
duplicate effort; i t is necessaiy if the robots in some situations would duplicate eftbrt if (part of)
the condition you specify does not hold.

(b) (6 points) Specify a sufficient and necessary constraint on how blocks are distributed over rooms
and on the BW4T task which ensures that the two robots wi l l never duplicate effort. That is,
provide a constraint on blocks and the BW4T task such that the robots w i l l avoid ever going to a
room wi th the goal to pick up the same block. Argue that your constraint is (i) sufficient and (ii)
necessary.

End of exam

M U L T I - A G E N T SYSTEMEN Exam, page 6 of 6 28 June 2013

|ij BW4T

nob

Alice

LeftHallO

FrontAl FlontA2 FioritA3

•
p!V>trA2

FrontDl FroniB2 FioritB3

a
R00.rB2 •

FrontCl FrontC2 Frontca

FrontDiopZone RIghtHallD

Figure 1: BW4T world

