
Distributed Systems Group 
Department Software Technology 
Faculty EEMCS 
DELFT UNIVERSITY OF TECHNOLOGY 

Examination Distributed Algorithms (IN4150) 

4 A p r i l 2016, 1:30-4:30 P M 

Notes 

1. The number of exercises in this exam is 3, and the number of pages of this exam is 2. 

2. Do give clear, precise, and concise answers. 

3. The maximum number of points to be obtained for each part of each exercise is indicated 

between parentheses. 

New this year These numbers of points add up to 19. The remaining 3 points can be earned 

for the clarity, preciseness, and conciseness of the answers. Students are strongly encouraged 

to first write (or at least sketch) their answers on scratch paper before writing them on the 

sheets they wil l hand in. 

4. The final grade for the exam is computed as 12 plus the total number of points obtained for 

the three exercises and the paper summaiy divided by 10 and rounded to the neai-est integer 

or integer+O.S. 

5. The solutions to the exercises can be either in Dutch or in English. 

1 



1. (a) (6) Give in words tiie algoritiim of Chandy and Lamport for detecting tlie global state of 

a distributed system. 

Consider in (b) and (c) below a system consisting of two bank accounts (processes) 

A and B with initial value 100 each, and a separate channel each way between the 

accounts. 

(b) (4) Suppose that A sends two messages with amounts of 50 each to B, and vice versa. 
Show an execution of the algorithm in which the recorded states of both processes are 
50 and the recorded states of both channels consist of a single message with an amount 
of 50. 

(c) (4) Suppose now that A sends a single message with an amount of 100 to B, and vice 
versa, and suppose that both processes start the algorithm spontaneously. Is it possible 
that the global state that wil l be recorded has not actually occuired in the system? I f 
yes, show an execution of the algorithm in which is the case. I f no, argue why this is not 
posssible. 

(d) (5) Suppose in general that the global state detected by the algorithm has not actually 
occurred. Explain how the order of events that have taken place can be changed in such 
a way that the detected state would have occuiTcd. 

2. (a) (6) Give definitions of the concepts of fragment, the level of a fragment, and the minimum-

weight outgoing edge (MOE) of a fragment in the Minimum-weight Spanning Tree al­

gorithm of Gallager, Humblet, and Spira (GHS). 

(b) (4) Explain the concepts of merging two fragments and of absorbing one fragment into 

another in this algorithm. 

(c) (5) I f in the GHS algorithm fragment Fi is absorbed by fragment F2 and the node in 

F2 to which Fl is connected has already reported in the cuiTcnt search for the MOE of 

F2, fragment Fi is not included in this search anymore. Explain why this is indeed not 

needed. 

(d) (4) In the situation of (c), the node in F2 to which Fi is connected wil l send an i n i t i a t e 

message to the connecting node in F i . Describe the parameters of this message, and ex­
plain the actions of this connecting node upon reception of the message. 

3. (a) (4) FoiTTiulate the Byzantine agreement problem. In particular, state the conditions for 

agreement and validity. 

(b) (6) Give in words the algorithm for randomized Byzantine agreement. 

(c) (4) Assume that there are 11 processes, two of which are faulty. Give an assignment of 
the initial values with which the coiTcct processes start the first round and a scenario for 
the first round in which none of the correct processes proposes a 0 or a 1. 

(d) (5) Give a scenario in which the correct processes wil l never reach a decision. 

2 



Distributed Systems Group 
Department Software Technology 
Faculty EEMCS 

DELFT UNIVERSITY OF TECHNOLOGY 

Distributed Algorithms (IN4150) 
List of algorithms 

March 15, 2016 

Below is a list of the algorithms in the order of treatment in the course, with the names of the 

original authors, i f applicable. 

Chapter 3: Synchronization 

1. Alpha-, beta-, and gamma-synchronizer: Awerbuch 

2. Causal message ordering (broadcast): Birman-Schiper-Stephenson 

3. Causal message ordering (point-to-point): Schiper-Eggli-Sandoz 

4. Total message ordering 

5. Determining global states: Chandy-Lamport 

6. Termination detection in a unidirectional ring 

7. Termination detection in a general networlc 

8. Deadlock detection for AND requests: Chandy-Misra-Haas 

9. Deadlock detection for OR requests: Chandy-Misra-Haas 

10. Deadlock detection for M-out-of-N requests (with/without instantaneous communication): 

Bracha-Toueg 

1 



Chapter 4: Coordination 

1. Assertion-based mutual exclusion: Lamport 

2. Assertion-based mutual exclusion: Ricart-Agi^awala 

3. Assertion-based mutual exclusion: Maekawa 

4. Generalized assertion-based mutual exclusion 

5. Token-based mutual exclusion: Suzuki-Kasami 

6. Token-based mutual exclusion: Singhal 

7. Token-based mutual exclusion (tree-based): Raymond 

8. Detection of loss and regeneration of a token 

9. Election in a synchronous unidirectional ring (non-comparison-based) 

10. Election in a bidirectional ring: Hirschberg-Sinclair 

11. Election in a bidirectional ring (enhanced version) 

12. Election in a unidirectional ring: Chang-Roberts 

13. Election in a unidirectional ring: Peterson 

14. Election in a synchronous complete network: Afek-Gafni 

15. Election in an asynchi^onous complete network: Afek-Gafni 

16. Minimum-weight spanning trees: Gallager-Humblet-Spira 

Chapter 5: Fauh Tolerance 

1. Agreement with stopping failures 

2. Byzantine agi'cement with oral messages: Lamport-Pease-Shostak 

3. Byzantine agî eement with authentication: Lamport-Pease-Shostak 

4. Randomized Byzantine agreement 

5. Stabilizing mutual exclusion: Dijkstra 

6. Stabilizing stop-and-wait datalink algorithm 

7. Stabilizing sliding-window datalink algorithm 

2 


