TECHNISCHE UNIVERSITEIT DELFT
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft

Exam IN4301 Advanced Algorithms
mid-semester test

October 28 2008, 10.00-12.00

o This is an open book examination with 4 questions worth of 21 points in total. Your mark will be
the number of points divided by 2.

e Use of book, readers and slides is allowed, but other notes or (copies of) other material is not.
e Use of (graphical) calculators is not permitted.

o Specify your name, student number and degree program, and indicate the total number of submitted
pages at least on the first page.

o Write clearly and avoid verbose explanations. Giving irrelevant information may lead to a reduction
in your score.

e Use a separate sheet for each question.

o This exam covers Chapters 10 and 11 of Kleinberg, J. and Tardos, E. (2005). Algorithm Design,
and the first five papers from the reader (pages 1-94).

e The compensation rules offered when you take part in this mid-semester test are as follows:

— If you obtain a grade > 5.0, this result will be taken into account when participating in the
final examination in January. If your result is less than 5.0, this result will not be taken into
account.

— if you obtained a result > 5.0 for the mid-semester test then

% if you complete both Part | and Part Il of the final examination, your final grade is the
average of the maximum of the grades obtained for Part | (i.e., the result of the mid-
semester test and the result of the January exam) and the grade obtained for Part Il of
the January exam.

% if you complete only Part Il of the final examination, your final grade is the average of
the grade obtained for Part | during the mid-semester test and the grade obtained for
Part 1l of the January exam.

— The above compensation rules only hold for the January 2009 exam and not for the re-
examination later that year.

e Total number of pages of this exam: 2.

Advanced Algorithms, IN4301 page 1 of 2 October 2008

1. Given a Boolean formula in conjunctive normal form (CNF) with m clauses (of arbitrary length) and
n variables, consider the NP-complete problem of finding a truth assignment to the variables in this
formula that satisfies at least & clauses (MAXSAT).

In this exercise we assume that the given formula does not contain any clauses with both a variable
and the negation of the same variable. Such clauses can never be satisfied and can thus be removed.

(a) (1 point) Given the following CNF with 4 clauses and 2 variables: (—zV —g) A (zVy) A
(mxz Vy) A (—y). Does there exist a truth assignment that satisfies at least 3 clauses? If so,
give such a truth assignment. If not, explain why not.

(b) (1 point) Suppose that k < [%11 Give a simple linear algorithm to find a truth assignment
that satisfies at least k clauses, and briefly explain why this algorithm is correct.

(c) (1 point) Suppose that & > [%]. To arrive at an efficient kernelization, we split the set of
clauses into two classes: [longer clauses that have at least k literals, and m — [shorter clauses
that have less than & literals. Suppose that [> k. Explain how you could easily satisfy at least
k clauses.

(d) (2 points) Suppose that there are less than k clauses with at least k literals, so I < k. Using the
idea just mentioned, we only first need to find k — [clauses to satisfy among the m — [shorter
clauses (with less than k literals), and can then easily satisfy the ! longer clauses. Finding at
least k —1I clauses to satisfy among the m — [shorter clauses is a kernel of this problem. Bound
the size of this kernel from above in terms of k (as strictly as possible).

2. The minimum-cost dominating set problem is specified by an undirected graph G = (V, E') and costs
¢(v) on the nodes v € V. A subset § C V is said to be a dominating set if all nodes w € V — §
have an edge (u,v) to a node v in S. The goal is to find such a dominating subset S with minimal
costs, i.e., such that 3 - c(v) is minimized. In this exercise we only study the special case in which
G is a tree.

(a) (3 points) Give a recursive function that returns the cost of the minimum-cost dominating set
for the special case in which G is a tree.

(b) (2 points) Give an iterative polynomial-time algorithm that prints the minimum-cost dominating
set for the special case in which G is a tree.

Please turn page.

The square brackets denote rounding upwards.

Advanced Algorithms, IN4301 page 2 of 2 October 2008

3. The Min Makespan Problem is: given n jobs to schedule on m identical machines, where job j has
size sj € N, schedule the jobs to minimize their makespan. Here, the makespan of a schedule is the
earliest time when all machines have stopped doing work. This problem is NP-hard, as can be seen
by a reduction from the Partitioning problem.

The following algorithm, due to Ron Graham, yields an approximation algorithm:
Algorithm 1 (Graham's List Scheduling)

Given a set of n jobs and a set of m empty machine queues,

1. Order the jobs arbitrarily in a list L of jobs.
2. Until the job list L is empty, move the next job in the list to the end of the shortest machine
queue.
You have to answer the following questions:
» . . - l . . .
(a) (2 points) Prove that this algorithm is a (2 — L)-approximation algorithm.
(b) (1% points) Give a tight example, proving that the 2 — ;%l— bound is tight.

(c) (1% points) Suppose that the machines k = 1,...,m are non-identical in the sense that a job
J with size s; needs [%] time units to complete when executed on machine &, where r, € N
and 7 > 1. Show that in this case Graham's List Schedulings algorithm does not provide a
constant ratio approximation algorithm for the minimal makespan.

(d) (1 point) (bonus) How can you improve this List Scheduling algorithm to deal with the non-
identical machine case?

4. Let M = (S,I) be a matroid, where S # (), let B C I be the set of bases of M, ¢ a cost function
S — N and for every A C S, ¢(A) = Z,eac(a)

(a) (Y, point) Give an example of a matroid M where |B| = 1.
(b) (%, point) Give an example of a matroid M such that |B| = |S| (be careful).
(c) (2 points) Show that the following property is a consequence of M being a matroid:

For every two bases B, B' € B, & € B— B’ implies that there exists somey € B' — B
such that (B — {z}) U{y} € B.

(d) (2 points) Consider the following swapping algorithm:

Algorithm 2 (Swapping Algorithm)
1. Choose any B € B;
2. while 3B" € B such that |(B' = B)U (B — B')| = 2 and ¢(B’) > ¢(B)
(a) B:=PB
Prove that, given M, the swapping algorithm finds an optimal basis B, i.e., a basis B such that
¢(B) is maximal.

End of test

