
## Introduction to Mathematical Finance (wi3417tu) January 31st 2017, 18.30–21.30

(No books, no notes.)

Please note: answers should be supplemented by motivation, explanation and/or calculation, whichever may be appropriate; you may choose Dutch or English as the language to use for your answers. Point distribution: each part of a question is worth 1 point; the grade is the number of points earned plus 1.

- 1. Write down all the valid *stopping times* for the 1-period binomial model (number them  $\tau_1$ ,  $\tau_2$ , etcetera).
- 2. Consider the following 3-period binomial interest rate model with risk-neutral probabilities:



- **a.** Construct a table with the distributions of  $D_1$ ,  $D_2$ , and  $D_3$ . Also determine all transition probabilities in the above tree.
- b. Determine  $B_{0,2}$  and  $B_{1,3}$ .
- **c.** Explain what a 3-period interest rate cap is. Determine the price if K = 1/3 is the maximal interest rate to be paid.

- 3. Consider a 3-period binomial model for the stock price-evolution with  $u=2,\,d=1/2,\,r=1/4$  and  $S_0=12.$ 
  - a. Determine the time-zero value of an American put option with expiration n=3 and strike 9. Also, specify the optimal exercise rule.
  - b. Suppose you are holding one such option and at time n=1 someone offers to exchange it for an American call with the same expiration and the same strike. Should you accept it?
  - c. After the first coin toss, which yields  $\omega_1 = T$ , it becomes known that the interest rate goes up. Will this affect your decision under b.? If so, how? N.B. Only consider the case  $\omega_1 = T$ .
- 4. Consider the N-period binomial interest rate model,  $0 \le n \le m \le N-1$ .
  - a. A derivative pays at time m+1:  $V_{m+1}=R_m$ . Express the time-n price  $V_n$  in terms of zero-coupon bond prices.
  - b. Explain the meaning of  $F_{n,m}$  and specify the details of the related contract. Does  $F_{n,m}$  equal  $V_n$ ? Explain why (not).