Introduction to Mathematical Finance (wi3417tu) November 1st 2016, 18.30–21.30 uur

(No books, no notes.)

Please note: answers should be supplemented by motivation, explanation and/or calculation, whichever may be appropriate; in particular, whenever you apply a property of conditional expectations like TOWK, indicate this and explain why it applies. You may choose Dutch or English as the language to use for your answers. Point distribution: each part of a question is worth 1 point; the grade equals the number of points earned plus 1.

- 1. a. State the definition of arbitrage and show the following for the N-period binomial model: if, after discounting, every wealth process X_0, \ldots, X_N is a martingale under $\tilde{\mathbb{P}}$, then there can be no arbitrage.
 - Consider a 1-period binomial model with parameters $S_0 = 2$, $S_1(H) = 5$, $S_1(T) = 1$, $r = \frac{1}{2}$. A derivative has payoff $V_1(H) = 2$, $V_1(T) = 10$. Construct a portfolio and use it to show that there is arbitrage if the time-zero price of the derivative is 3 Euros.
- 2. Consider the floating strike lookback option in the binomial model with parameters $S_0 = 12$, u = 2, $d = \frac{1}{2}$, r = 0, and N = 3. This option pays at expiration like a call option whose strike equals the lowest value the stock has attained; if we define $M_n = \min_{0 \le k \le n} S_k$, then the payoff can be expressed as: $V_N = S_N M_N$.
 - $\mathcal{J}\mathbf{a}$. Determine $V_1(H)$ and $V_1(T)$ by using the formula $V_n = \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1+r)^{N-n}} \right]$.
 - **b.** Determine V_0 and the composition of the replicating portfolio (number of shares and bank balance) at n = 0.
 - Show that (S_n, M_n) , $n = 0, 1, \ldots$ is a Markov process under $\tilde{\mathbb{P}}$.
- 3. Consider two probability measures $\mathbb P$ and $\tilde{\mathbb P}$ on the outcome space Ω . Every outcome $\omega \in \Omega$ has a positive probability under both probability measures. Let Z be the Radon-Nikodým derivative of $\tilde{\mathbb P}$ with respect to $\mathbb P$, and Y an arbitrary random variable. Show that

 $\mathbb{E}[Y] = \tilde{\mathbb{E}}\left[\frac{1}{Z} \cdot Y\right].$

4. Consider the binomial model with probabilities p=1/3 and q=2/3. Define $X_i=+2$ if $\omega_i=H;\ X_i=-1$ if $\omega_i=T$. Define $M_0=0,\ S_0=1,$ and for $n\geq 1$:

$$M_n = \sum_{j=1}^n X_j, \qquad S_n = 2^{M_n}.$$

Each of the processes thus defined is *adapted*. You may use without proof that M_0, M_1, \ldots is a Markov process. Below you are asked to answer questions on the properties of these processes; whether you answer "yes" or "no", give an argument to support your claim.

- $\mathbf{a}_{\mathbf{b}}$ State the definition of a martingale and determine if M_0, M_1, \ldots is a martingale.
- §. Is S_0, S_1, \ldots a martingale?
- c. Because M_0, M_1, \ldots is a Markov process and $S_n = h(M_n)$ with $h(m) = 2^m, S_0, S_1, \ldots$ is a Markov process as well. Is this true for any Markov process M_0, M_1, \ldots ? Explain. For any function h?