
Exam 23-6-2014 SDE and Solutions (Mastermath)

1. Let Bt be the standard Brownian motion, B∗T = sup0≤t≤T Bt and λ > 0.

(a) Apply Doob’s maximal inequality to prove that P (B∗T ≥ λ) ≤ T

λ2
. [3 pt]

(b) Sharpen the inequality in (a) by applying the convex function x 7→ (x+ c)2 to Bt for a

suitable constant c to prove that P (B∗T ≥ λ) ≤ T

λ2 + T
. [2 pt]

Solution (a) Doob’s maximal inequality says that for a continuous non-negative submartingale

λP (M∗T ≥ λ) ≤ E[MT ].

Now Bt is not non-negative, but we know that B2
t is a non-negative submartingale, since

f(x) = x2 is a convex function. Observe that P (B∗t ≥ λ) ≤ P ((B∗t )2 ≥ λ2) and apply the
inequality.[

I have been lenient with the non-negativity, and only subtracted half a point in
case you forgot.

]
(b) Now repeat the argument for the submartingale (Bt + c)2 for a clever choice of c. Now
P (B∗t ≥ λ) ≤ P ((Bt + c)2 ≥ (λ+ c)2 and apply Doob’s maximum inequality again to find

P (B∗t ≥ λ) ≤ E[(BT + c)2]

(λ+ c)2
=

T + c2

(λ+ c)2

A clever choice of c minimizes this ratio: choose c = T/λ and you find the desired inequality.


This exercise turned out to be very difficult; not many people solved it - but
all women that participated in the exam were able to solve it! If you lost 1/2
point in (a) for not noticing negativity, I made that up with you if you said
something about Jensen here. NB The reflection principle allows to compute
P (B∗T ≥ λ) in closed form!


2. (a) Use the Itô isometry to calculate the mean and the variance of

∫ t
0
(Bs + s)dBs. [3 pt]

(b) Calculate the mean and the variance of
∫ t
0
(Bs + s)ds. [4 pt]

Solution (a) Compare this exercise to equation (6.19) in the book! The Itô integral It is a martingale,
so the mean is zero. Almost everybody got that. The Itô isometry says that

E[I2t ] = E[

∫ t

0

(Bs + s)2ds]

where you need that the function f(s,Bs) = s + Bs is in H2, but we know from the book
that f(s) = s and f(Bs) = Bs are in H2, so the condition is satisfied. Now we apply
Fubini and move the expectation inside, which is allowed since the integrand is non-negative∫ t
0
E((Bs + s)2)ds =

∫ t
0
(s+ s2)ds = t2

2 + t3

3 .

 Almost everybody got mean zero (1 point) and was able to apply the Itô isometry
(1 point). Some people failed to mention why Fubini applies or made a small
mistake in the integral (costs you half a point). I was glad to see that most
people knew their Fubini and some even checked it in detail.
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(b) The mean follows from Fubini, though here you have to be a bit careful since Bt is not
non-negative. You can notice for instance that |Bt| is integrable. Fubini says that the mean

is E[It] =
∫ t
0

(E[Bs] + s) ds = t2

2 .

To compute the variance, it is easiest to observe that the variance of
∫ t
0
(Bs+s)ds is equal to

the variance of
∫ t
0
Bsds since the other half of the integral is deterministic. This simplifies the

computation since
∫ t
0
Bsds has mean zero. Now E[(

∫ t
0
Bsds)

2] = E[(
∫ t
0
Bsds)(

∫ t
0
Budu)] =

E[
∫ t
0

∫ t
0
BsBudsdu] and if we apply Fubini then we end up with E[BsBu] = min(s, u) and

we have a standard integral which works out to t3

3 .


Officialy, you would have to check that this is allowed, for instance using that
Brownian motion is square integrable. Steele glosses over this a bit and so I
don’t mind if you do the same, though some of you did check all the details!

A few students were very clever and applied Itô’s formula to solve this.


Alternative way: Use Itô’s formula to arrive at tBt =

∫ t
0
Bsds +

∫ t
0
sdBs so that the

required quantity is the variance of It = tBt −
∫ t
0
sdBs =

∫ t
0
(t − s)dBs. Then use Itô

isometry

Var(It) = E[(I2t )] = E

[∫ t

0

(t− s)2ds
]

=
t3

3
.



Unfortunately, all these clever students made errors in their computation. Most
importantly, they silently assumed that tBt and

∫ t
0
sdBs are independent, which

they are not, before applying Itô isometry. So perhaps it is not so clever to
handle the exercise like this after all.

I gave you 1 point for the mean, 2 points for splitting up the integral into a
double dsdu integral or for being clever and moving on to the Itô isometry. And
1 point for finding the right answer. If you never mentioned Fubini, I deducted
one point.


3. Let Bt be the standard Brownian motion with respect to the filtration Ft and let τ−1 be the

stopping time τ−1(ω) = inf{t : Bt(ω) = −1}.

(a) Show that Zt = Bt∧τ−1
is a martingale with respect to Ft. (refer to a theorem!) [2 pt]

We introduce a time-change Xt(ω) = Zt/(1−t)(ω) for 0 ≤ t < 1. It follows from exercise (a)
that Xt is a martingale for 0 ≤ t < 1 with respect to the time-change of the filtration.

(b) Argue that limt→1Xt = −1 with probability one. [1 pt]

(c) We extend the definition by Xt = −1 for t ≥ 1. Prove that the process Xt is not a
martingale. [2 pt]

(d) Prove that Xt is a local martingale. Use the localizing sequence τk that is defined by
τk(ω) = inf{t : Xt(ω) = k} if there exists such a t, or else τk(ω) = k. [2 pt]

Solution (a) This is a direct application of Doob’s stopped martingale theorem: simply observe that
Bt is a continuous martingale.

(b) Recall that τ−1 <∞ with probability one, see for instance p 56 of the book or remember
your stochastic processes course. Once you have recalled this, you have solved the exercise.

(c) If Xt is a martingale then E[Xt] = X0 = 0 which is obviously not true if t ≥ 1.[
Almost everybody was able to quote the correct theorems in (a) and (b) and use
the expectation in (c).

]
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(d) Recall the definition of a local martingale. You have to show that τk →∞ with proba-
bility one and that the stopped process Xt∧τk is a proper martingale.

To check that τk → ∞ recall that if you stop Brownian motion as soon as you reach k or
−1, then this stopping time has E[τ ] = k and you stop at k with probability 1/(k + 1). So
if k →∞ then you stop at −1 with probability one. You need to observe this to prove that
τk →∞.

Now you need to prove that the stopped process Xt∧τk is a martingale. Note that if t ≥ 1 then
Xt∧τk(ω) is equal to −1 if τk(ω) = k and otherwise τk(ω) < 1 so then the stopped process is
equal to k. If t < 1 then Xt is equal to Zt/(1−t which is a stopped Brownian motion that is
rescaled from time (0,∞) to time (0, 1). In formula: Xt = Bt/(1−t) ∧ τ−1/(1− τ−1), but it
is easier to write this as: Xt = Bs∧τ−1

with rescaled time s = t/(1− t). So Xt∧τk is equal to
Bs∧τ−1∧τk where by abuse of notation the stopping time τk for Bt has the standard meaning
of stopping the Brownian motion at k.

Now collect all these observations: if t < 1 then Xt ∧ τk is equal to the Brownian motion
Bs stopped at −1 or at k. If t ≥ 1 then Xt∧τk is equal to the stopped Brownian motion
for s → ∞, which is either equal to −1 or to k. This is a martingale again by the stopped
martingale theorem. Part (d) was the hardest exercise. The main purpose of the exercise was to

check whether you know the definition. Most of you got the definition right and
were able to use the stopped martingale theorem. Hardly anybody checked that
τk →∞ !


4. Use the method of coefficient matching to solve the stochastic differential equation (SDE)

dXt = −1

2
Xt dt+

√
1−X2

t dBt where X0 = 0.

Look for a solution of the form u(Bt). [3 pt]

Remark: Note that the diffusion coefficient in the SDE, σ(x) =
√

1− x2, is not Lips-
chitz in x near ±1. So, the existence and uniqueness theorem do not “officially” apply
here. This shows that the conditions in the theorem are not necessary. They are suffi-
cient conditions. Once the “formal” answer by coefficient matching is obtained, you’ll
see that if we wanted to we could prove that our formal answer is an honest answer.
We omit this work here, but sometimes it may be necessary.

Solution Let us look for a solution of the form u(Bt) for the given SDE

dXt = −1

2
Xt dt+

√
1−X2

t dBt, X0 = 0. (1)

Applying Itô formula to u(Bt) we get

d[u(Bt)] =
1

2
u′′(Bt) dt+ u′(Bt) dBt. (2)

If u(Bt) needs to be a solution to the SDE (1), we must have

d[u(Bt)] = −1

2
u(Bt) dt+

√
1− u(Bt)2 dBt. (3)

Matching the coefficients of the equations (2) and (3) we get

u′(x) =
√

1− u(x)2 and u′′(x) = −u(x).

This leads to the solution u(x) = sin(x + c), where c is a constant. The initial condition
X0 = u(B0) = u(0) = 0, in turn, leads to c = kπ, with integer k. Hence the solution to the
given SDE (1) is

Xt = sin(Bt + kπ) = sin(Bt), t ≥ 0.
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5. Let (Bt)t≥0 be a standard Brownian motion on the filtered probability space (Ω,F(Ft), P ).

Show that Xt = e
1
2 t cosBt is an Ft-martingale. [3 pt]

[You may use any theorem, but make sure that the result is applicable by checking all the
required conditions.]

Solution Consider the function f(t, x) = e
1
2 t cos(x). Clearly f(t, x) is differentiable in its first argu-

ment “t” with continuous (partial) derivative and twice differentiable w.r.t. its 2nd argument
“x” with continuous (partial) derivative, i.e., f ∈ C1,2([0, T ]× R). Note that

fx(t, x) =
∂f

∂x
(t, x) = −e 1

2 t sin(x) and fxx(t, x) = −e 1
2 t cos(x).

Furthermore,

ft(t, x) =
∂f

∂t
(t, x) =

1

2
e

1
2 t cos(x) = −1

2
fxx(t, x).

Applying the time-and-space variant of Itô formula we then have

dXt = d[f(t, Bt)] = fx(t, Bt)dBt +

(
ft(t, Bt) +

1

2
fxx(t, Bt)

)
︸ ︷︷ ︸

0

dt = fx(t, Bt)dBt

= −e 1
2 t sin(Bt)dBt.

We can then rewrite Xt as

Xt = X0 +

∫ t

0

dXs = 1 +

∫ t

0

(
−e 1

2 s sin(Bs)
)
dBs.

Note that the integrand of the Itô integral on the right hand side (RHS) is bounded by e
1
2T

for every (t, ω) in [0, T ] × Ω. Hence it is in H2. Hence the Itô integral on the RHS is a
Martingale. Since addition of a constant does not change the martingale property, it is now
proved that Xt is a Martingale.

6. Let (Bt)t≥0 be a standard Brownian motion on the filtered probability space (Ω,F(Ft), P ).
Suppose (Xt)0≤t≤T satisfies the stochastic differential equation (SDE)

dXt = µXt dt+ σXt dBt, 0 < t ≤ T,
X0 = x0,

and (Yt)0≤t≤T evolves deterministically as

Ẏt = rYt, 0 < t ≤ T,
Y0 = y0.

where µ, σ, r, x0 and y0 are positive constants, and µ is greater than r.

(a) Use Itô formula to find the SDE satisfied by X̃t ≡
Xt

Yt
, 0 ≤ t ≤ T . [2 pt]

(b) Using the Girsanov theorem, construct a probability measure under which X̃t is an
Ft-martingale. [3 pt]

Solution Let Xt and Yt be as given in the question.
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(a) Note that both Xt and Yt are standard (or Ito) processes. [Actually, Yt is trivially a
standard process, because it is deterministic.] Observe that Yt is always positive.

To obtain the SDE for X̃t ≡
Xt

Yt
we apply the Itô formula for two standard processes (in

this case, the product formula) with f(x, y) = x
y , which is clearly in C2,2(R × (0,∞)).

We then have (in box calculus notation)

dX̃t = d[f(Xt, Yt)]

= fxdXt + fydYt +
1

2
fxxdXt · dXt +

1

2
fyydYt · dYt + fxydXt · dYt, (4)

where for brevity we have suppressed the arguments in the partial derivatives; for
example, fx ≡ fx(Xt, Yt).

Note that, since Yt is deterministic dYt · dYt = dXt · dYt = 0. Furthermore, we have

dXt · dXt = σ2X2
t dt, fx(x, y) =

1

y
, fxx(x, y) = 0, and fy(x, y) = − x

y2
.

The Itô product formula (4) then leads to the desired SDE

dX̃t =
1

Yt
dXt −

Xt

Y 2
t

dYt =
1

Yt
Xt [µdt+ σ dBt]−

Xt

Y 2
t

rYt dt

= X̃t [(µ− r) dt+ σ dBt], (t > 0) (5)

with X̃0 = x0/y0.

Alternative way: Note that Yt = y0e
rt and hence X̃t = y−10 e−rtXt, apply time-space

variant of Itô formula.

(b) From (5) we see that X̃t is also a standard process given by

X̃t = x̃+

∫ t

0

µ̃(ω, s) ds+

∫ t

0

σ̃(ω, s) dBs,

where x̃ = x0

y0
, µ̃(ω, s) = (µ− r) X̃s, and σ̃(ω, s) = σ X̃s.

To turn X̃t into a martingale we necessarily need to remove the drift term. Note that

θ(ω, t) ≡ (µ̃(ω, t)− 0)

σ̃(ω, t)
=

(µ− r)
σ

is a constant (and hence bounded). Hence we can

apply the Girsanov theorem to obtain a new measure Q given by
dQ

dP
= MT , where

Mt = e−
∫ t
0
θ(ω,s)dBs− 1

2

∫ t
0
θ(ω,s)2ds = exp

(
− (µ− r)

σ
Bt −

1

2

(µ− r)2

σ2
t

)
so that under measure Q, X̃t can be expressed as

B̃t = Bt +

∫ t

0

θ(ω, s)ds = Bt +
(µ− r)
σ

t

is a Brownian motion and under Q,

X̃t = x̃+

∫ t

0

σ̃(ω, s) dB̃s or equivalently dX̃t = σ̃(ω, t) dB̃t = σ X̃t dB̃t.

We need to prove now that under Q, X̃t is a proper/honest martingale (instead of
possibly being only a local martingale). Since B̃t is a Brownian motion under Q, the
last SDE provides us the explicit expression for X̃t, namely,

X̃t = x̃ exp

(
σ B̃t −

1

2
σ2 t

)
, t ≥ 0,

which is one of the three famous martingales related to the Brownian motion, multiplied
by a constant (but that does not cause any problem).
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