
SOLUTIONS EXAM EXERCISES

Solution 1. (i) We have
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and by independence of the increments
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(iv) By the assumption on the finiteness of the stopping time, we have that
Zτ∧n → X almost surely. By (iii) we may apply dominated convergence to
conclude that also

lim
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That implies the statement.

(v) By Fubini and (iii)
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(The last step either by partial integration or using the observation that the
integral is the expectation of an exponential variable with parameter one.)

Solution 2. (i) by Ito formula with f(x) = ex and Xt = αBt − 1
2α2t, we have
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(ii) We have
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The statement follows now by the fact that the last line equals
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and by the hint.

(iii) By Ito isometry we obtain from the assumption about the convergence of
the generating function that
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(iv) We have by (i) and (iii)∑
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matching coefficients yields the statement.

Solution 3. (i) Using the ansatz

Xt = u(t)
(
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,

we obtain
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Matching coefficients yields

u̇ = −au, v = σ/u.

That implies
u(t) = Ae−at, v = σ

Aeat.

Hence

Xt = Ae−at

(
x0 +

∫ t

0

σ

A
eas dBs

)
and by adjusting the free parameter A to the requirement X0 = x0 we finally
obtain
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(ii) In the sequel, we use without proof the fact mentioned in the lecture that
processes of the form

Yt =
∫ t

0

f(s)dBs

with deterministic f are Gaussian with independent increments. Hence (assume
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and we can apply this letting
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in the following way (again s ≤ t)
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The same calculation with s ≥ t yields the statement.

Solution 4. Let

G := {F ∈ F∞ : ∀ε>0∃n≥0,g∈Fn
: P (F4G) < ε}.

(i) We want to show that G = F . First we show that G is a σ-algebra.

(a) ∅ ⊂ G: For F = ∅ let n = 0 and G = ∅ ∈ F0. Then G4F = ∅ and also
P (G4F ) = 0 < ε.

(b) F ∈ G ⇒ F c ∈ G: Assume F ∈ G. Then there is some n ≥ 0 and G ∈ Fn

such that P (G4F ) < ε. But G ∈ Fn implies Gc ∈ Fn. By G4F = Gc4F c we
obtain P (Gc4F c) = P (G4F ) < ε and that implies the statement.

(c) Fk ∈ G, k ≥ 1 ⇒
⋃

k≥1 Fk ∈ G: First of all, note that

(F1 ∪ F2)− (G1 ∪G2) = (F1 − (G1 ∪G2)) ∪ (F2 − (G1 ∪G2))
⊆ (F1 −G1) ∪ (F2 −G2)

implies that
(F1 ∪ F2)4(G1 ∪G2) ⊆ (F14G1) ∪ (F24G2).

That implies that all finite unions of sets in G are contained in G. (For unions
of two sets, you can see this by choosing G1 and G2 such that P (F14G1) =
P (F24G2) = ε/2.) Now we reduce the problem (c) to unions of finitely many
sets: Let ar := P (

⋃
k=1,...,r Fk). Then ak is monotonously increasing and

bounded above by 1. Hence ak converges and we can therefore choose some
K > 0 such that
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⋃
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For each k ≤ K we now have by definition some Gk ∈ Fnk
with P (Fk4Gk) <

ε
2K . Let N := maxk≤K nk. Then ∪k=1,...,KGk ∈ FN and we obtain by the
formula above
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= ε/2 + ε/2 = ε.

Thus, G is a σ-algebra.

It remains to show that F∞ ⊆ G, since by definition we already know that
G ⊆ F∞. Because F∞ is the smallest σ-algebra containing all Fn, we are done
if we can prove that G contains as well all Fn. Let thus F ∈ Fn. Then we
may choose G = F ∈ Fn and obtain P (F4G) = P (F4F ) = P (∅) = 0. Hence
F ∈ G and thus Fn ⊆ G. Since n was arbitrary, that implies the statement.

(ii) Let ξ = 1F , F ∈ F∞ an indicator function. Then the statement follows from
E|1F − 1G|p = P (F4G) and (i). Now step functions are dense in Lp(Ω,F∞)
and we thus have always some step function s :=

∑n
i=1 fi 1Fi

such that

E|ξ −
n∑

i=1

fi 1Fi |p < ε/2.

Now we use that by (i) we can find Gi ∈ Fni such that for all i = 1, ..., n we
have

P (Fi4Gi) <
(ε/2)1/p

n|fi|
.

Thus, the step function η :=
∑n

i=1 fi 1Gi
is FN -measurable with N := maxni

and we have

E|ξ − η|p ≤ E|ξ − s|p + E|η − s|p < ε/2 + E|
n∑

i=1

fi (1Fi
− 1Gi

)|p

≤ ε/2 +

(
n∑

i=1

|fi|P (Fi4Gi)

)p

< ε/2 + ((ε/2)1/p
n∑

i=1

1
n

)p = ε.

That implies the statement.

(iii) Without loss of generality we assume that ξ is F∞-measurable (otherwise we
substitute ξ by ξ̂ := E(ξ | F∞). Let now η ∈ Lp(Ω,Fn) be a function such that
E|ξ−η|p < ε/2. Then by triangle inequality and Lp-contractivity of conditional
expectation

E|E(ξ | Fm)− ξ|p ≤ E|E(ξ | Fm)− η|p + E|η − ξ|p

= E|E(ξ − η | Fm)|p + E|η − ξ|p ≤ ε/2 + ε/2 = ε



for all m ≥ n. Since we can find some n and η for all values of ε > 0 by (ii),
that implies the statement.

(iv) Conditional expectation is only defined almost surely. Hence it only makes
sense to ask for pointwise convergence almost surely. But actually this is pro-
vided by the martingale convergence theorem. The first observation is that for
ξ ∈ Lp(Ω,F), by contractivity of conditional expectation E|E(ξ | Fn)|p < ∞ for
all n. Hence

Xn := E(ξ | Fn)

is an Lp-martingale by tower property

E(Xn+1 | Fn) = E(E(ξ | Fn+1) | Fn) = E(ξ | Fn) = Xn.

Thus, by martingale convergence, there is some random variable X∞ to which
Xn converges almost surely and in Lp. By (iii), this random variable must
almost surely coincide with E(ξ | F∞).


