Stochastic Differential Equations (3TU), 12 June, 2006, 14.00 - 17.00

Grading: (1+1) + (1) + (1+1) + (1+1+1+1) + (1) + (1).

1. Let $\{X_i : 1 \leq i < \infty\}$ be a sequence of independent random variables with the probability distribution given by

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}.$$

Let S_n denote the partial sums

$$S_n = X_1 + \ldots + X_n, \quad n > 1,$$

and let $S_0 \equiv 0$. Define

$$Y_n = (-1)^n \cos [\pi (S_n + A)], \quad n \ge 1,$$

where A is a given positive integer. Let

$$\tau = \min\{Y_n : S_n = A \text{ or } S_n = -A\}.$$

- (a) Prove that $\{Y_n : 1 \leq n < \infty\}$ is a martingale with respect to the sequence $\{X_i : 1 \leq i < \infty\}$.
- (b) Show that τ is a stopping time and that $P(\tau < \infty) = 1$. Hint: let E_k denote the event that $X_i = 1$ for all integers $i = 2kA, \ldots, 2(k+1)A - 1$. Then $\{\tau > 2nA\} \subset \bigcap_{k=0}^{n-1} E_k^c$ (explain why).
- 2. Let $\{B_t : 0 \le t < 1\}$ be a Standard Brownian Motion on [0,1). Define

$$X_t = \frac{1}{\sqrt{a}} B_{at}, \quad 0 \le t < \frac{1}{a},$$

where a > 0 is a given constant. Show that $\{X_t : 0 \le t < 1/a\}$ is a Standard Brownian Motion on [0, 1/a).

3. Let $\{B_t : t \geq 0\}$ be a Standard Brownian Motion and let $\{\phi_k\}$ be a complete, orthonormal basis in $L_2[0,T]$, i.e.

$$\langle \phi_k, \phi_l \rangle = \int_0^T \phi_k(t) \phi_l(t) dt = \begin{cases} 1, & k = l \\ 0, & k \neq l, \end{cases}$$

and, for any $\phi \in L_2[0,T]$,

$$\lim_{N \to \infty} \|\phi - \sum_{k=1}^{N} \langle \phi, \phi_k \rangle \phi_k \|^2 = 0,$$

where $\|.\|$ denotes the norm in $L_2[0,T]$.

(a) Show that

$$E\left[\left(\int_0^T \phi(t) dB_t - \sum_{k=1}^N \langle \phi, \phi_k \rangle \int_0^T \phi_k(t) dB_t\right)^2\right] = \|\phi - \sum_{k=1}^N \langle \phi, \phi_k \rangle \phi_k\|^2.$$

(b) Show that

$$\int_0^T \phi(t) dB_t = \sum_{k=1}^{\infty} \langle \phi, \phi_k \rangle \int_0^T \phi_k(t) dB_t,$$

where the infinite sum in the right hand side converges in the mean-square sense.

4. Let $\{B_t: t \geq 0\}$ be a Standard Brownian Motion. Define

$$X_t = \exp(B_t - t/2), \quad t \ge 0.$$

- (a) Show that X_t is a martingale with $E(|X_t|) = 1$ for all $t \ge 0$.
- (b) Show that X_t converges in probability to $X_{\infty} \equiv 0$ as $t \to \infty$.
- (c) Give the formulation of the Martingale Convergence Theorem in continuous time. Explain carefully that, as $t \to \infty$, X_t converges to $X_{\infty} \equiv 0$ with probability 1, i.e. $P(\lim_{t\to\infty} X_t = X_{\infty}) = 1$. Discuss $\lim_{t\to\infty} \|X_t X_{\infty}\|_p$ for $p \ge 1$.
- (d) Give the definition of uniform integrability. Show that X_t is not uniformly integrable.
- 5. Let $\{B_t: t \geq 0\}$ be a Standard Brownian Motion. Show that

$$dB_t^n = \frac{1}{2}n(n-1)B_t^{n-2} dt + nB_t^{n-1} dB_t.$$

6. Use appropriate coefficient matching to solve the SDE

$$dX_t = \mu dt + \sigma X_t dB_t$$
 with $X_0 = 0$.