
TU Delft Mekelweg 4

Faculteit EWI, DIAM 2628 CD Delft

Exam Applied Functional Analysis
January 20, 2016, 13.30 - 16.30

All answers should be carefully motivated.

Results from the course book and notes may be used without proof,

provided they are cited correctly.

The use of any electronic equipment is prohibited.

Grading: 1
3 × [(3 + 2) + (3 + 2 + 3) + (2 + 2 + 2 + 2) + (2 + 2 + 2) + (3 free)]

Unless otherwise stated, the scalar field K can be both R and C.

1. Let X0 be a dense subspace of a Banach space X, let Y be a Banach
space, and let T0 : X0 → Y be a linear operator.

(a) Prove that if T0 is bounded, then T0 can be extended to a bounded
linear operator T : X → Y and show that this extension is unique.

Solution: A complete proof is in the Notes. (Correct def. of the
extension: 1 pt. Well-definedness: 1/2 pt. Boundedness of the ex-
tension: 1/2 pt. Uniqueness: 1 pt.)

(b) Give an example of a linear operator T0 : X0 → Y that cannot be
extended to a bounded operator T : X → Y . Motivate your answer.

Solution: Take for instance X = Y = C[0, 1], X0 = C1[0, 1], and
T0f := f ′, the derivative operator. It it had a bounded extension,
then T0 would be bounded with respect to the supremum norm on
C1[0, 1]. It is, however, easy to produce functions fn ∈ C1[0, 1]
satisfying ‖fn‖∞ = 1 and ‖f ′n‖ > n (just make sure that the slope
gets steep enough at some point).

2. Consider the linear mapping T : L1(R)→ L∞(R) defined by

Tf(ξ) :=

∫ ∞
−∞

f(x) sin(ξx) dx (f ∈ L1(R), ξ ∈ R).

(a) Show that T is bounded and compute its norm.

Solution: From

‖Tf(ξ)‖∞ 6
∫
R
|f(x) sin(ξx)| dx 6

∫
R
|f(x)| dx = ‖f‖1
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we see, after taking the sup over ξ, that T is bounded and ‖T‖ 6 1
(1 1/2 pt). To see that also ‖T‖ > 1, fix ε > 0. Choose δ > 0 so
small that sin(x) > 1−ε for all x ∈ [12π,

1
2 +δ]. Set f := 1

δ1( 1
2
π, 1

2
π+δ).

This function satisfies ‖f‖1 = 1. Moreover,

‖T‖ > ‖Tf‖ > |Tf(1)| = 1

δ

∣∣∣ ∫ 1
2
π+δ

1
2
π

sin(x) dx
∣∣∣

>
1

δ

∣∣∣ ∫ 1
2
π+δ

1
2
π

(1− ε) dx
∣∣∣ = 1− ε.

It follows that ‖T‖ > 1 (1 1/2 pt). Since we had already that
‖T‖ 6 1, we conclude that ‖T‖ = 1.

(b) Show that the space C0(R) consisting of all continuous functions f :
R → K satisfying lim|x|→∞ f(x) = 0, endowed with the supremum
norm, is a closed subspace of L∞(R).

Solution: The inclusion is given by identifying a continuous function
with its equivalence class modulo null sets. Since the essential supre-
mum (as used in the definition of L∞(R) agrees with the supremum
for continuous functions, this identification is isometric (1/2 pt). To
show that C0(R) is a closed subspace, let fn → f in L∞(R) with
fn ∈ C0(R) (1/2 pt). Then f is continuous, it being the uniform
limit of a sequence of continuous functions (1/2 pt). Let ε > 0.
Choose N so large that ‖fn− f‖∞ < ε for all n > N . Choose R > 0
so large that |fN (x)| > ε for |x| > R. Then, for |x| > R,

|f(x)| 6 |fN (x)|+ |f(x)− fN (x)| < 2ε.

This proves that lim|x|→∞ |f(x)| = 0, i.e. f ∈ C0(R) (1/2 pt).

(c) Show that T maps L1(R) into C0(R).

Hint: By direct computation, check that T maps indicator functions
1(a,b) into C0(R). Combine this with the fact (which may be used
without proof) that step functions are dense in L1(R). Use the result
of Problem 1.

Solution: Fist of all, by dominated convergence we see that Tf is
sequentially continuous, hence continuous, for all f ∈ L1(R) (use |f |
as majorising function) (1 pt). Following the hint we compute (1/2
pt)

T1(a,b)(ξ) =

∫ b

a
sin(ξx) dx =

1

ξ
(cos(ξa)− cos(ξb))

which decays to 0 as t→∞, showing that T1(a,b) ∈ C0(R) (1/2 pt).
By taking linear combinations, it follows that Tf ∈ C0(R) for all
step functions. By Problem one, T has an extension to a bounded
operator, which we call T for the moment, from L1(R) to C0(R) (1/2
pt). To complete the proof we must show that this extension agrees
with the Fourier transform. To this end let f ∈ L1(R) and choose
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step functions fn → f in L1(R). Then, by the boundedness of T and
T ,

Tf = lim
n→∞

Tfn = lim
n→∞

Tfn = Tf

where we view Tf as a function in C0(R) and Tf as a function in
L∞(R). It follows that Tf = Tf as functions in L∞(R) (1/2 pt).

3. Let H be a Hilbert space with inner product (·|·) and orthonormal basis
(hn)n>1. A bounded operator T ∈ L (H) is said to be a Hilbert-Schmidt
operator if

‖T‖L2(H) :=
(∑
n>1

‖Thn‖2
)1/2

<∞.

(a) Show that if (h′n)n>1 is another orthonormal basis of H, then∑
n>1

‖Th′n‖2 =
∑
n>1

‖Thn‖2,

i.e., the definition of a Hilbert-Schmidt operator does not depend on
the choice of the orthonormal basis.

Solution: We have∑
n

‖Th′n‖2 =
∑
n

∑
m

(Th′n|hm) =
∑
m

∑
n

(h′n|T ?hm) =
∑
m

‖T ?hm‖2.

where the change of summation order is justified by absolute con-
vergence of the double sum. By the same reasoning (with h′n = hn),∑

n ‖Thn‖2 =
∑

m ‖T ?hm‖2. Comparing these identities gives the
result.

(b) Show that if T is a Hilbert-Schmidt operator, then ‖T‖ 6 ‖T‖L2(H).

Solution: Fix any h of norm one and compute the HS norm using
any orthonormal basis starting with h, say (hn)n>1 with h = h1.
Then

‖Th‖2 = ‖Th1‖2 6
∑
n>1

‖Thn‖2 = ‖T‖22.

Taking the supremum over all h of norm one gives ‖T‖ 6 ‖T‖2.
(c) Show that the set L2(H) of all Hilbert-Schmidt operators on H is a

Hilbert space with respect to the inner product

(T |S)L2(H) :=
∑
n>1

(Thn|Shn).

Solution: The properties of an inner product are routinely verified
(you should have done this in the exam, 1/2 pt)) and here we esta-
blish completeness. Suppose (Tn)n>1 is a Cauchy sequence with res-
pect to the HS norm. From ‖·‖L (H) 6 ‖·‖L2(T ) we see that (Tn)n>1

is Cauchy in L (H) and therefore converges to some T ∈ L (H) (1/2
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pt). To show that T is HS, fix ε > 0 and choose N so large that
‖Tn − Tm‖2 6 ε for n,m > N . For any integer K and all n,m > N ,

K∑
k=1

‖(Tn − Tm)hk‖2 6 ‖Tn − Tm‖22 6 ε2.

Passing to the limit m→∞, this gives

∥∥∥ K∑
k=1

(Tn − T )hk‖2 6 ε2.

Passing to the limit K →∞, this gives Tn − T ∈ L2(H) and ‖Tn −
T‖2 6 ε. But then also T = Tn−(Tn−T ) ∈ L2(H), and the previous
estimate means that Tn → T in L2(H) (1 pt).

(d) Show that every Hilbert-Schmidt operator is compact.

Hint: Consider Tn = T ◦ Pn, where Pn is the orthogonal projection
onto the span of {h1, . . . , hn}.
Following the hint, note that Pn has finite-dimensional range and
therefore is compact. Hence, TPn is compact (1 pt). To finish the
proof, it remains to show that ‖Tn − T‖ → 0, for then T is compact
being a uniform limit of compact operators (1/2 pt).

Now

‖Tn − T‖2 6 ‖Tn − T‖22 =
∞∑
j=1

‖(T − TPn)hn‖2 =
∞∑

j=n+1

‖Thn‖2,

and this tends to 0 as n→∞ (1 pt).

(e) LetH = Kd with the standard unit vector basis and let A = (aij)
d
i,j=1

be a (d×d) matrix with coefficients in K. Show that A, considered as
a bounded operator on H, is a Hilbert-Schmidt operator and express
‖A‖L2(Kd) in terms of the coefficients aij .

Solution: Take the standard unit vectors en (1/2 pt). Then Aen is
the n-th column vector of A (1/2 pt). Accordingly (1 pt),

‖A‖22 =
d∑

n=1

‖Aen‖2 =
d∑

n=1

d∑
m=1

|amn|2.

4. In this problem we work over the real scalar field. Consider the boundary
value problem

u′′ − qu = −f, u(0) = u(1) = 0,

where f ∈ L2(0, 1) is a given function and q : [0, 1]→ R is a non-negative
continuous function. We call a function u ∈ H1

0 (0, 1) a weak solution if∫ 1

0
u′(x)φ′(x) dx+

∫ 1

0
q(x)u(x)φ(x) dx =

∫ 1

0
f(x)φ(x) dx ∀φ ∈ C1

c (0, 1).
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(a) Show that

ϕ(g) :=

∫ 1

0
f(x)g(x) dx (g ∈ H1

0 (0, 1))

defines a bounded linear functional on H1
0 (0, 1).

(b) Show that

a(g1, g2) :=

∫ 1

0
g′1(x)g′2(x) + q(x)g1(x)g2(x) dx (g1, g2 ∈ H1

0 (0, 1))

defines a continuous coercive bilinear form on H1
0 (0, 1).

(c) Prove that the above boundary value problem has a unique weak
solution.

Solution: A more general case is in the Notes. For instance, coerci-
vity follows from

a(g, g) > ‖g′‖22 > C−2‖g‖2H1 ,

where C is the constant of the Poincaré inequality (in the format
‖g‖H1 6 C‖g′‖2 for g ∈ H1

0 ).

-- The end --
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