2628 CD Delft

Assignment exam Applied Functional Analysis January 8, 2016, 10.45 - 12.30

Solutions should be given in full detail

Grading: $3 + (1 + 1\frac{1}{2} + 1\frac{1}{2}) + 3$

All vector spaces are over the scalar field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

1. Let $(x_n)_{n\geqslant 1}$ be a sequence in a Hilbert space H with inner product $(\cdot|\cdot)$ and suppose there exists an $x\in H$ such that $(x_n|y)\to (x|y)$ for all $y\in H$ and $||x_n||\to ||x||$. Show that $x_n\to x$ in H.

Solution: Was given in the assignment class.

- 2. Let X and Y be Banach spaces, and let D(A) be a linear subspace of X. Let $A:D(A)\to Y$ be a linear operator. In this context the subspace D(A) is called the *domain* of A. Such an operator is said to be *closed* if its graph $\{(x,Ax):x\in D(A)\}$ is closed in $X\times Y$.
 - (a) Show that the following assertions are equivalent:
 - (i) A is closed;
 - (ii) whenever $(x_n)_{n\geqslant 1}$ is a sequence in D(A) and x and y are elements in X and Y respectively such that $x_n\to x$ and $Ax_n\to y$, then $x\in D(A)$ and Ax=y.
 - (b) Let X = Y = C[a, b], and consider the linear operator $A : D(A) \to Y$ with domain $D(A) = C^1[a, b]$, given by

$$Au := u'$$

where u' is the derivative of u. Show that A is closed.

(c) Let $X = Y = L^p(I)$, where $I \subseteq \mathbb{R}$ is an open interval and $p \in [1, \infty]$. Consider the linear operator $A : D(A) \to Y$ with domain $D(A) = W^{1,p}(I)$ given by

$$Au := u'$$

where u' is the weak derivative of u. Show that A is closed.

Solution: Was given in the assignment class.

3. Show that the weak solution $u \in H_0^1(0,1) \cap H^2(0,1)$ of the boundary value problem

$$\begin{cases}
-u'' = f, \\
u(0) = u(1) = 0,
\end{cases}$$
(1)

for a fixed $f \in L^2(0,1)$, satisfies

$$J(u) = \min \{J(v): v \in H_0^1(0,1)\},\$$

where $J:H^1_0(0,1)\to\mathbb{R}$ is the 'energy functional' given by

$$J(v) = \frac{1}{2} \int_0^1 (v'(x))^2 dx - \int_0^1 f(x)v(x) dx.$$

Hint: Compute J(u+h) for arbitrary $h \in H_0^1(0,1)$.

Solution: Any $v \in H_0^1(0,1)$ can be written as v = u + h, where u is the weak solution and h = v - u is in $H_0^1(0,1)$ since both u and v are. Then

$$J(u+h) = \frac{1}{2} \int_0^1 (u'(x) + h'(x))^2 dx - \int_0^1 f(x)(u(x) + h(x)) dx$$

$$= J(u) + \int_0^1 u'(x)h'(x) dx + \int_0^1 (h'(x))^2 dx - \int_0^1 f(x)h(x) dx$$

$$\stackrel{(*)}{=} J(u) - \int_0^1 u''(x)h(x) dx + \int_0^1 (h'(x))^2 dx - \int_0^1 f(x)h(x) dx$$

$$= J(u) + \int_0^1 (h'(x))^2 dx \geqslant J(u).$$

This shows that the weak solution u minimises J. (correcte berekening: $1\frac{1}{2}$ pt)

The integration by parts step in (*) is justified as follows. Since the second weak derivative u'' equals -f we have

$$\int_0^1 u'(x)\phi'(x) dx = -\int_0^1 u''(x)\phi(x) dx \quad \forall \phi \in C_c^1(0,1).$$
 (2)

Now given an $h \in H_0^1(0,1)$, using the density of $C_c^1(0,1)$ in $H_0^1(0,1)$ (zien dat een dichtheidsargument nodig is: $\frac{1}{2}$ pt) we can find $\phi_n \in C_c^1(0,1)$ such that $\phi_n \to h$ in the norm of $H_0^1(0,1)$, that is, $\phi_n \to h$ in $L^2(0,1)$ and $\phi'_n \to h'$ in $L^2(0,1)$. But then, by Cauchy–Schwarz (note that u' and u'' are in $L^2(0,1)$),

$$\int_0^1 u'(x)\phi'_n(x) \, dx \to \int_0^1 u'(x)h'(x) \, dx$$

and

$$\int_0^1 u''(x)\phi_n(x) \, dx \to \int_0^1 u''(x)h(x) \, dx.$$

Therefore, applying (2) to ϕ_n and taking the limit $n \to \infty$ on both sides, we arrive at (correct dichtheidsargument: 1 pt)

$$\int_0^1 u'(x)h'(x) dx = -\int_0^1 u''(x)h(x) dx.$$

-- The end --