2628 CD Delft

Exam Applied Functional Analysis January 24, 2014, 14.00 - 17.00

All answers should be carefully motivated

Grading:
$$(1+1)+(1+\frac{1}{2})+(1+1)+(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2})+(1+\frac{1}{2})+(1$$
 free)

All vector spaces in this exam are real.

1. Let $E = \{f \in C[0,1]: f(1) = 0\}$ endowed with the supremum norm $\|\cdot\|_{\infty}$. Consider the functional $\phi: E \to \mathbb{R}$ defined by

$$\phi(f) = \int_0^1 f(t) dt \quad (f \in E).$$

- (a) Show that ϕ is bounded and determine its norm.
- (b) Show that for all non-zero $f \in E$ we have $|\phi(f)| < ||f||_{\infty}$.
- 2. Let (Ω, d) be a metric space, let $f: \Omega \to \mathbb{R}$ be continuous, and consider a subset $A \subseteq \Omega$.
 - (a) Show that $f(\overline{A}) \subset \overline{f(A)}$.
 - (b) Show that if A is compact, then f(A) is compact.
- 3. Let $(h_n)_{n=1}^{\infty}$ be an orthonormal system in a Hilbert space H.
 - (a) Prove that for all $h \in H$ we have $\sum_{n=1}^{\infty} |\langle h, f_n \rangle|^2 \leq ||h||^2$. Hint: Write $h = (h - P_N h) + P_N h$, where P_N is the orthogonal projection onto the linear span of $(h_n)_{n=1}^N$, and prove first that $||P_N h|| \leqslant ||h||.$
 - (b) Prove that the following three assertions are equivalent:
 - (i) the linear span of $(h_n)_{n=1}^{\infty}$ is dense in H;
 - (ii) for all $h \in H$ the sum $\sum_{n=1}^{\infty} \langle h, h_n \rangle h_n$ converges to h in H; (iii) for all $h \in H$ we have $\sum_{n=1}^{\infty} |\langle h, h_n \rangle|^2 = ||h||^2$.

Hint: One could proceed by proving $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)$. For $(i) \Rightarrow (ii)$ show first that $P_N h \to h$ for each h in the (dense) linear span of $(h_n)_{n=1}^{\infty}$; for (iii) \Rightarrow (i) consider a vector g orthogonal to each h_n .

-- Please turn the page --

4. Consider the operator of indefinite integration $J: L^2(a,b) \to C[a,b]$,

$$Jf(t) := \int_a^t f(s) \, ds \quad (f \in L^2(a,b), \ t \in [a,b]).$$

- (a) Show that J indeed takes values in C[a,b] and is bounded as an operator from $L^2(a,b)$ to C[a,b].
- (b) Show that for all $f \in L^2(a,b)$ the function Jf is in $H^1(a,b)$, with weak derivative (Jf)' = f.
- (c) Show that a function $g \in L^2(a,b)$ belongs to $H^1(a,b)$ if and only if it is of the form g = Jf + c1 for some $f \in L^2(a,b)$ and $c \in \mathbb{R}$; here 1 is the constant-one function.
- (d) Use (c) to prove the following version of the Poincaré inequality: there exists a finite constant $c \ge 0$ for all $g \in H^1(0,1)$ we have

$$||g - \langle g, \mathbf{1} \rangle_{L^2(0,1)} \mathbf{1}||_{L^2(0,1)} \le c ||g'||_{L^2(0,1)}.$$

- 5. Let X and Y be Banach spaces. A linear operator $T: X \to Y$ is called compact if the image under T of every bounded sequence in X has a convergent subsequence in Y.
 - (a) Show that every compact operator is bounded.
 - (b) Show that if $T:X\to Y$ is compact and $U:X\to X$ and $S:Y\to Y$ are bounded linear operators, on X and Y, then $S\circ T\circ U:X\to Y$ is compact.