Exam Embedded Software TI2720-C

Monday, January 30th 2012

Time: 3 hours

In order to avoid misunderstanding on the syntactical correctness of code fragments in this examination, we will always assume that we are dealing with pseudo-code, although we might have syntactically correct code in some cases. We assume that the required variables, semaphores, tasks, timers, etc. are always declared and initialized correctly.

Please answer **each** of the 20 questions in **less than 100 words**. Each answer will be awarded 0.5 points if fully correctly answered, 0 points otherwise. The exam mark is computed by summing the points for all answers.

- 1. Name three general characteristics of embedded systems.
- 2. What is an FPGA? Name one advantage and one disadvantage of using an FPGA in a design versus using a dedicated microcontroller in the same design.
- 3. Define what interrupts are, and describe what happens when an interrupt is triggered.
- 4. What is an interrupt vector table and precisely what information does it contain?
- 5. Assume that event X triggers a specific interrupt. Assume that after a "disable interrupt" command, event X occurs several times, after which an "enable interrupt" command follows. Explain what happens immediately after the "enable interrupt" command.
- 6. What is the status of the interrupts when a processor starts? Motivate why this is the case.
- 7. What is a critical section?
- 8. What does the liveness property of embedded software actually mean?
- 9. What is the worst response time for the Function-Queue architecture?
- 10. What is a "context" and how does it relate to the task switching mechanism?
- 11. Assume that two tasks with the same priority are in the "ready" state. What happens next and how can this situation be dealt with by an RTOS?
- 12. Define reentrant functions and describe their characteristics.
- 13. Give a pseudocode example of mutual exclusion occurring between the critical sections of two tasks.
- 14. Define what priority inversion is and illustrate such a scenario using pseudocode or a time diagram.
- 15. How does the mechanism of non-busy-waiting work in a RTOS? Comment on its accuracy.

- 16. Using semaphore functionality inside an interrupt routine in a RTOS without any precautions may crash the system. Please give such an example (time diagram or pseudocode) and comment on how to avoid it.
- 17. Define and characterize the out-of-band collection technique in the context of network instrumentation.
- 18. Give two reasons for which time-slicing should not be used in a RTOS for embedded systems.

Consider the following piece of code:

```
volatile static long int lSecondsToday;
void interrupt vUpdateTime()
{
    ++lSecondsToday;
}
long lGetSeconds()
{
    long lReturn;
    lReturn = lSecondsToday;
    while (lReturn!=lSecondsToday)
        lReturn = lSecondsToday;
    return (lReturn);
}
```

- 19. Does this code suffer from the shared-data bug? Explain your answer.
- 20. How does the behavior of the previous fragment of code change if the word "volatile" would be removed from the first line of code?