Assignment 1:

Consider the following transfer function:

$$H(z) = \frac{-z}{z^2 - 2z + \frac{3}{4}}.$$

a) Determine the poles and zeros of H(z), and plot the pole-zero map

Consider the following regions of convergence:

$$R_1: |z| > \frac{3}{2}$$

$$R_2$$
: $|z| < \frac{1}{2}$

R₃:
$$\frac{1}{2} < |z| < \frac{3}{2}$$

- b) Compute the inverse ${\mathcal Z}$ -transform of H(z) when the region of convergence is ${\bf R}_1$.
- c) Compute the inverse \mathcal{Z} -transform of H(z) when the region of convergence is \mathbf{R}_2 .
- d) Compute the inverse ${\mathcal Z}$ -transform of H(z) when the region of convergence is ${\bf R}_3$.

Assignment 2:

A discrete-time signal \boldsymbol{x} has the following Fourier transform

$$X(\omega) = \frac{1}{1 - ae^{-j\omega}}, \quad |a| < 1.$$

a) Give an expression for x(n).

Give the Fourier transforms of the following signals

- b) x(2n+1)
- c) (x*x)(n)
- d) $x(n)\cos(\frac{\pi}{3}n)$

Assignment 3:

Consider the continuous-time signal

$$x_a(t) = \begin{cases} e^{-\alpha t} e^{-j2\pi f_0 t}, & t \ge 0 \\ 0, & t < 0 \end{cases}, \quad \alpha > 0.$$

a) Show that

$$X_a(f) = \frac{1}{j2\pi(f+f_0) + \alpha}.$$

b) Sketch the magnitude spectrum of X_a for $f_0 = 10~\mathrm{Hz}$

The signal x_a is sampled to obtain the discrete-time signal x.

- c) Sketch the magnitude spectrum of X(f), the Fourier transform of the discrete-time signal x, for $f_s=10,20$ and 40 Hz and explain the results in terms of aliasing effects.
- d) What is the minimum sampling frequency f_s such that the continuous-time signal x_a can be perfectly recovered from its samples x(n)?

Assignment 4:

Consider the transfer function

$$H(z) = \frac{z^2 - 1}{z^2 + \frac{1}{4}},$$

of a causal linear time-invariant system with its direct form-II implementation shown below.

Figure 1: Direct form II implementation of H(z)

- a) What are the values of the filter coefficients b_0, b_1, b_2, a_1 and a_2 ?
- b) What can you say about the pole positions and stability of the system? (*Hint:* use the stability triangle)
- c) What are the zeros and poles of H(z) and plot the pole-zero map
- d) Sketch the corresponding magnitude and phase response

Consider the following (suddenly applied) input signal

$$x(n) = \left(e^{j\frac{\pi}{2}n} + e^{j\pi n}\right)u(n),$$

and assume the system is initially in rest.

- e) Compute the steady-state response $y_{ss}(n)$ when x(n) is input to the system
- f) Compute the total response of the system $y(n) = y_{\rm tr}(n) + y_{\rm ss}(n)$, where $y_{\rm tr}(n)$ denotes the transient response of the system