
Dear all,

The solutions given in these notes differ in two places from the ones given last
Monday when I worked out the example exam.

Firstly, the answer given in Assignment 2b, the Fourier transform ofx(2n + 1),
was not correct. I took this example from the book (Problem 4.22a, p. 298),
including the answer given in the solution manual. While carefully writing out the
solutions for these notes, I realized that there was a mistake in the solutions given
by Proakis. Actually, the right answer was already given during the instructions
on October 6 where a similar problem (Problem 4.17e, p. 297) was discussed. At
that time I didn’t have the solution manual, which nicely shows that you can better
think for yourself, rather than copying results from others,

The second difference is in Assignment 3, in particular 3a. Although the results
are right, the way I derived the result is not correct. To avoid these problems
(which I will explain below), I changed the question as follows:

Consider the continuous-time signal

xa(t) =

{
e−αte−j2πf0t, t ≥ 0
0, t < 0

, α > 0.

a) Show that

Xa(f) =
1

j2π(f + f0) + α
.

Note that forα → 0, we are back at the problem as it was originally posted.
The problem we have whenα = 0 is that that signal has infinite energy so

that it is tricky to compute the Fourier transform (the function is not integrable).
Indeed, the energy ofxa(t) as given above is

∫ ∞

−∞

|xa(t)|2dt =

∫ ∞

0

e−2αtdt =
−1

2α
e−2αt

∣
∣
∣
∣

∞

0

=
1

2α
,

which is finite forα > 0, but becomes infinte forα = 0.
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Let us have a look at the solution of Assignment 3a in these notes. We have
∫ ∞

0

e−(j2π(f+f0)+α)tdt =
−1

j2π(f + f0) + α
e−(j2π(f+f0)+α)t

∣
∣
∣
∣

∞

0

= 0 − −1

j2π(f + f0) + α

=
1

j2π(f + f0) + α
.

This derivation isonly valid for α > 0 not for α = 0. So,

−1

j2π(f + f0)
e−j2π(f+f0)t

∣
∣
∣
∣

∞

0

6= 0 − −1

j2π(f + f0)
,

as I wrote down last week. The reason for this is that

lim
t→∞

e−jt 6= 0,

since the functione−jt is 2π-periodic. This in contrast to

lim
t→∞

e−t = 0.

Now coming back to the solution of Assignment 3a, we concludethat

−1

j2π(f + f0) + α
e−(j2π(f+f0)+α)t

∣
∣
∣
∣

∞

0

=
−1

j2π(f + f0) − α
e−j2π(f+f0)te−αt

∣
∣
∣
∣

∞

0

= 0 − −1

j2π(f + f0) − α
,

if and only if α > 0 since in that case the terme−αt → 0 ast → ∞ (note that
|e−j2π(f+f0)t| = 1).

In order to correctly prove the result forα = 0, we have to use a limiting argument.
That is,

xa(t) =

{
e−j2πf0t, t ≥ 0
0, t < 0

= lim
α↓0

{
e−αte−j2πf0t, t ≥ 0
0, t < 0

,

so that

Xa(f) = lim
α↓0

1

j2π(f + f0) + α
=

1

j2π(f + f0)
, f ∈ R \ {−f0}.

2



Some additonal remarks. I do not expect you to derive Fouriertransforms using
limiting arguments. When writing down the original assignment in the weekend I
simply overlooked the fact that the signal was of infinite energy. The signals you
can expect at the exam will be of finite energy.

Richard
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Assignment 1:

a)

H(z) =
−z

z2 − 2z + 3
4

=
−z

(z − 1
2
)(z − 3

2
)
.

Hence, a zero atz = 0 and two poles atz = 1
2

andz = 3
2
.

1

im(z)

re(z)

3
2

1
2

Figure 1: Pole-zero map ofH(z).

b) ROC|z| > 3
2
. Hence, we have a causal solution and

h(n) =
1

2πj

∮

Ĉ
H(z)zn−1dz =

1

2πj

∮

Ĉ

−zn

(z − 1
2
)(z − 3

2
)
dz,

whereC is a counterclockwise closed contour in the region of convergence
|z| > 3

2
. Forn ≥ 0, we have two poles insideC, so that

h(n) = Res
z= 1

2

H(z)zn−1 + Res
z= 3

2

H(z)zn−1

= lim
z→ 1

2

(z − 1

2
)H(z)zn−1 + lim

z→ 3

2

(z − 3

2
)H(z)zn−1

= lim
z→ 1

2

−zn

z − 3
2

+ lim
z→ 3

2

−zn

z − 1
2

=

(
1

2

)n

−
(

3

2

)n

.

c) ROC|z| < 1
2
. Hence, we have an anti-causal solution.

H(z) =
−z

(z − 1
2
)(z − 3

2
)

=
−z−1

(1− 1
2
z−1)(1− 3

2
z−1)

,
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so that, withp = z−1,

H(p) =
−p

(1− 1
2
p)(1− 3

2
p)

=
−4

3
p

(p− 2)(p− 2
3
)
.

Hence,H(p) has poles atp = 2
3

andp = 2, which both lie inside the region
of convergence, which is|p| > 2 (|z| < 1

2
implies|p| > 2).

2
3

im(p)

re(p)
1

2

Figure 2: Pole-zero map

Since we have an anti-causal solution, we use

h(n) =
1

2πj

∮

Ĉ′

H(p)p−n−1dp =
1

2πj

∮

Ĉ′

−4
3
p−n

(p− 2)(p− 2
3
)
dp,

whereC ′ is a counterclockwise closed contour in the region of convergence
|p| > 2. Forn ≤ 0, we have two poles insideC ′ so that

h(n) = Res
p= 2

3

H(p)p−n−1 + Res
p=2

H(p)p−n−1

= lim
p→ 2

3

−4
3
p−n

p− 2
+ lim

p→2

−4
3
p−n

p− 2
3

=

(
3

2

)n

−
(

1

2

)n

.

d) ROC1
2

< |z| < 3
2
. In this case we have a causal and anti-causal contribution

to the total solution. We have

h(n) =
1

2πj

∮

Ĉ

−zn

(z − 1
2
)(z − 3

2
)
dz

︸ ︷︷ ︸

1 pole insideC for n ≥ 0

=
1

2πj

∮

Ĉ′

−4
3
p−n

(p− 2)(p− 2
3
)
dp

︸ ︷︷ ︸

1 pole insideC′ for n ≤ 0

,
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whereC is taken in1
2

< |z| < 3
2

andC ′ in 2
3

< |p| < 2. Hence,

n ≥ 0 : h(n) = Res
p= 1

2

H(z)zn−1 (see b)
=

(
1

2

)n

,

n ≤ 0 : h(n) = Res
p= 2

3

H(p)p−n−1 (see c)
=

(
3

2

)n

.

Note that we have a stable solution in case the region of convergence is1
2

< |z| <
3
2
, since this is the only region containing the unit circle.

Alternative solution: Partial-fraction expansion

H(z)

z
=

−1

(z − 1
2
)(z − 3

2
)

=
A

z − 1
2

+
B

z − 3
2

.

The constantsA andB are found by

A = lim
z→ 1

2

(z − 1

2
)
H(z)

z
= lim

z→ 1

2

−1

z − 3
2

= 1,

B = lim
z→ 3

2

(z − 3

2
)
H(z)

z
= lim

z→ 3

2

−1

z − 1
2

= −1,

and we conclude that

H(z) =
z

z − 1
2

− z

z − 3
2

.

b) ROC|z| > 3
2

and thus|z| > 1
2
. By table lookup (see Table 3.3, p. 170) we

find that

anu(n)
Z←→ 1

1− az−1
=

z

z − a
, |z| > a,

so that

h(n) =

((
1

2

)n

−
(

3

2

)n)

u(n).
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c) ROC|z| < 1
2

and thus|z| < 3
2
. By table lookup we find that

−anu(−n− 1)
Z←→ 1

1− az−1
=

z

z − a
, |z| < a,

so that

h(n) =

((
3

2

)n

−
(

1

2

)n)

u(−n− 1).

d) ROC 1
2

< |z| < 3
2
. By table lookup we find

h(n) =

(
1

2

)n

u(n) +

(
3

2

)n

u(−n− 1).
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Assignment 2:

a) We know that

1

1− az−1

Z←→ anu(n), |z| > a,

andX(ω) = X(z)|z=ejω , so that we concludex(n) = anu(n).

b) We definey(n) = x(2n) so thaty(n + 1
2
) = x(2n + 1). From Table 4.5, p.

290, we conclude that

y(n +
1

2
)

F←→ ej ω
2 Y (ω),

so that we are left with finding an expression forY (ω).

Y (ω) =

∞∑

n=−∞

y(n)e−jωn =

∞∑

n=−∞

x(2n)e−jωn

=
∞∑

n=−∞

x(2n)e−j ω
2
2n =

∑

m even

x(m)e−j ω
2

m

=

∞∑

m=−∞

1

2
(1 + (−1)m)x(m)e−j ω

2
m

=
1

2

∞∑

m=−∞

x(m)e−j ω
2

m +
1

2

∞∑

m=−∞

(−1)mx(m)e−j ω
2

m

=
1

2

∞∑

m=−∞

x(m)e−j ω
2

m +
1

2

∞∑

m=−∞

x(m)e−j(ω
2
−π)m

=
1

2
X

(ω

2

)

+
1

2
X

(ω

2
− π

)

.

Hence,

x(2n + 1)
F←→ ej ω

2

2

(

X
(ω

2

)

+ X
(ω

2
− π

))

.

c) From Table 4.5 we conclude that

(x ∗ x)(n)
F←→ X(ω)X(ω) = X2(ω).
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d) Again from Table 4.5 we conclude that

x(n) cos(
π

3
n)

F←→ 1

2
X(ω − π

3
) +

1

2
X(ω +

π

3
).
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Assignment 3:

a) We have

Xa(f) =

∫ ∞

−∞

xa(t)e
−j2πftdt =

∫ ∞

0

e−(j2π(f+f0)+α)tdt

=
−1

j2π(f + f0) + α
e−(j2π(f+f0)+α)t

∣
∣
∣
∣

∞

0

= 0− −1

j2π(f + f0) + α

=
1

j2π(f + f0) + α
.

b)

|Xa(f)|

f (Hz)

α−1

−10

Figure 3: Magnitude spectrum ofXa(f).

c) Due to the spectral overlap, aliasing errors occur. However, if the sampling
frequency increases, this error will become smaller. In theexample at hand,
a sampling frequency offs = 40 Hz will already give reasonable results.

d) SinceXa(f) is not bandlimited, we cannot recoverxa(t) out of its samples
x(n).

7



− fs

2

f (Hz)

|X(f)|, fs = 10 Hz

α−1fs

fs

2

Figure 4: Magnitude spectrum ofX(f) whenfs = 10 Hz.

fs

2

f (Hz)

|X(f)|, fs = 20 Hz

α−1fs

− fs

2

Figure 5: Magnitude spectrum ofX(f) whenfs = 20 Hz.

− fs

2

f (Hz)

|X(f)|, fs = 40 Hz

α−1fs

fs

2

Figure 6: Magnitude spectrum ofX(f) whenfs = 40 Hz.
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Assignment 4:

a)

H(z) =
z2 − 1

z2 + 1
4

=
1− z−2

1 + 1
4
z−2

=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
.

Hence,b0 = 1, b1 = 0, b2 = −1, a1 = 0 anda2 = 1
4
.

b) By inspection of the stability triangle (see Figure 3.5.1, p. 202), we conclude
that the system is stable (a1 < 1+a2 anda2 < 1). Moreover, sincea2 >

a2

1

4
,

we conclude that the system has two complex-conjugated poles.

c)

H(z) =
(z + 1)(z − 1)

(z + 1
2
j)(z − 1

2
j)

.

We have two zeros atz = ±1 and two poles atz = ±1
2
j.

−1
2j

re(z)

im(z)

1

1
2j

−1

Figure 7: Pole-zero map ofH(z).

d) Since the system has two zeros atz ± 1, the magnitude response will be
zero atω = 0 andω = π. It reaches a maximum at frequenciesω = π

2
and

ω = 3π
2

(closest to the poles) of

|ej π
2 + 1| · |ej π

2 − 1|
|ej π

2 + 1
2
j| · |ej π

2 − 1
2
j|

=

√
2
√

2
3
2

1
2

=
8

3
.
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8
3

3π
2

π
2 π 2π

ω

|H(ω)|

0

Figure 8: Magnitude spectrum ofH(ω).

The phase response is given by

∠H(ω) = ∠(ejω + 1) + ∠(ejω − 1)−∠(ejω +
1

2
j)− ∠(ejω − 1

2
j).

We have atω = 0+ that

∠H(0+) = 0 +
π

2
−∠(1 +

1

2
j)− ∠(1− 1

2
j) =

π

2
,

and atω = 0−

∠H(0−) = 0− π

2
− ∠(1 +

1

2
j)−∠(1− 1

2
j) = −π

2
.

At ω = π
2

we find

∠H(
π

2
) = ∠(j + 1) + ∠(j − 1)− ∠(j +

1

2
j)−∠(j − 1

2
j)

=
π

4
+

3π

4
− π

2
− π

2
= 0.

Similarly, we have∠H(3π
2

) = 0.

e) The steady-state response is given by

yss(n) = H(
π

2
)ej π

2
n + H(π)eiπn =

8

3
ej π

2
n,

since|H(π
2
)| = 8

3
, ∠H(π

2
) = 0 andH(π) = 0.
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−π
2

π
2 π 3π

2 2π
ω

∠H(ω)

π
2

0

Figure 9: Phase spectrum ofH(ω).

f) Let x(n) = x1(n) + x2(n), wherex1(n) = ej π
2
n andx2(n) = eiπn. We then

have that

Y (z) = H(z)X(z) = H(z)X1(z) + H(z)X2(z),

with

X1(z) =
z

z − ej π
2

=
z

z − j
,

X2(z) =
z

z − ejπ
=

z

z + 1
.

Therefore,

Y1(z) = H(z)X1(z) =
z(z2 − 1)

(z2 + 1
4
)(z − j)

=
z(z2 − 1)

(z + 1
2
j)(z − 1

2
j)(z − j)

.

The signaly1(n) can be found using contour integration or partial-fraction
expansion.

Partial-fraction expansion:

Y1(z)

z
=

z2 − 1

(z + 1
2
j)(z − 1

2
j)(z − j)

=
A

z + 1
2
j

+
A∗

z − 1
2
j

+
B

z − j
.

The constantsA andB are found by

A = lim
z→− 1

2
j

(z +
1

2
j)

Y1(z)

z
= lim

z→− 1

2
j

z2 − 1

(z − 1
2
j)(z − j)

=
5

6
,

11



B = lim
z→j

(z − j)
Y1(z)

z
= lim

z→j

z2 − 1

z2 + 1
4

=
8

3
,

so that

Y1(z) =
5

6

(
z

z + 1
2
j

+
z

z − 1
2
j

)

+
8

3

z

z − j
,

and we find, by table lookup, that

y1(n) =
5

6

((
1

2

)n

e−j π
2
n +

(
1

2

)n

ej π
2
n

)

+
8

3
ej π

2
n

=
5

3

(
1

2

)n

cos(
π

2
n)

︸ ︷︷ ︸

y1,tr(n)→0 for n→∞

+
8

3
ej π

2
n

︸ ︷︷ ︸

y1,ss(n)

.

Similarly, we find fory2(n):

Y2(z)

z
=

z2 − 1

(z + 1
2
j)(z − 1

2
j)(z + 1)

=
z − 1

(z + 1
2
j)(z − 1

2
j)

=
A

z + 1
2
j

+
A∗

z − 1
2
j
.

The constantA is found by

A = lim
z→− 1

2
j

(z +
1

2
j)

Y2(z)

z
= lim

z→− 1

2
j

z − 1

z − 1
2
j

=
1

2
− j,

so that

Y2(z) = (
1

2
− j)

z

z + 1
2
j

+ (
1

2
+ j)

z

z − 1
2
j
.

The inverseZ-transform is found by table lookup, and we conclude that

y2(n) = (
1

2
− j)

(
1

2

)n

e−j π
2
n + (

1

2
+ j)

(
1

2

)n

ej π
2
n

=

(
1

2

)n (

cos(
π

2
n) + 2 sin(

π

2
n)

)

︸ ︷︷ ︸

y2,tr(n)→0 for n→∞

.

Note thaty2,ss(n) = 0, which is consistent with the results obtained in part
e.
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