Dear all,

The solutions given in these notes differ in two places frbw dnes given last
Monday when | worked out the example exam.

Firstly, the answer given in Assignment 2b, the Fourierdfarm of z(2n + 1),
was not correct. | took this example from the book (ProblegPd, p. 298),
including the answer given in the solution manual. Whilestalty writing out the
solutions for these notes, | realized that there was a nastathe solutions given
by Proakis. Actually, the right answer was already givenrduthe instructions
on October 6 where a similar problem (Problem 4.17e, p. 2%8)discussed. At
that time | didn’t have the solution manual, which nicelywisdhat you can better
think for yourself, rather than copying results from others

The second difference is in Assignment 3, in particular 3dhaugh the results
are right, the way | derived the result is not correct. To dubiese problems
(which I will explain below), | changed the question as falk

Consider the continuous-time signal
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0, f<0 a > 0.

zq(t) =

a) Show that
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Ko = re

Note that fora. — 0, we are back at the problem as it was originally posted.

The problem we have whem = 0 is that that signal has infinite energy so
that it is tricky to compute the Fourier transform (the fuantis not integrable).
Indeed, the energy of,(¢) as given above is
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which is finite fora > 0, but becomes infinte fax = 0.



Let us have a look at the solution of Assignment 3a in thesesnd/e have
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This derivation isonly valid for o > 0 not for a« = 0. So,
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as | wrote down last week. The reason for this is that
lim e 7" # 0,

t—o00

since the functior 7! is 2r-periodic. This in contrast to

lim et = 0.

t—o0
Now coming back to the solution of Assignment 3a, we conchidé
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if and only if @ > 0 since in that case the termm® — 0 ast — oo (note that
|6—j27f(f+fo)t‘ =1).

In order to correctly prove the result far= 0, we have to use a limiting argument.
Thatis,

e—j27rf0t7 t>0 y e—oate—j2ﬁfot7 t>0
Ta(t) = 0, t<0_$?ol 0, t<0’

so that

Xa(f) = lalﬁ)l p22n(f + fo) +a  2n(f + fo)’
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Some additonal remarks. | do not expect you to derive Fotnagsforms using
limiting arguments. When writing down the original assigemhin the weekend |
simply overlooked the fact that the signal was of infinitergge The signals you
can expect at the exam will be of finite energy.

Richard



Assignment 1.
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H(z) =

Hence, a zero at = 0 and two poles at = ; andz =

N[

im(z)

Figure 1: Pole-zero map df (z).

b) ROC|z| > 2. Hence, we have a causal solution and
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whereC' is a counterclockwise closed contour in the region of cayeece
|z| > 2. Forn > 0, we have two poles insid€, so that

h(n) = Res H(2)z"~" + Res H(2)2"™!
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c) ROC|z| < 3. Hence, we have an anti-causal solution.




so that, withp = 271,

—p _ —ip
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Hence,H (p) has poles ap = % andp = 2, which both lie inside the region
of convergence, which ig| > 2 (|z| < 5 implies|p| > 2).

H(p) =

im(p)

Figure 2: Pole-zero map
Since we have an anti-causal solution, we use
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whereC” is a counterclockwise closed contour in the region of capwece
Ip| > 2. Forn < 0, we have two poles insid€’ so that
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d) ROC; < |z| < 2. Inthis case we have a causal and anti-causal contribution
to the total solution. We have

1 —zn 1 _ép—n
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1 pole insideC for n > 0

1 pole insideC’ forn < 0



whereC is taken in] < |z| < 2 andC"in 2 < |p| < 2. Hence,

1
n>0: h(n)=ResH(z)z""! (see b)(ﬁ) :

n<0: h(n) = ReQS1."-1(1))1077”"1 ez C)(g)

p=3

Note that we have a stable solution in case the region of cgenee is% < |z| <
%, since this is the only region containing the unit circle.

Alternative solution: Partial-fraction expansion

H(z) -1 A N B
z (z—3)(z=3%) =z—-3 =z-%
The constantsl and B are found by
1. H —1
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and we conclude that

b) ROC|z| > 2 and thusz| > ;. By table lookup (see Table 3.3, p. 170) we

find that
n z 1 z
= >
a"u(n) l—az! z—a’ 2 > o
so that



c) ROC|z| < 3 and thugz| < 2. By table lookup we find that

Z 1 z
—a"u(—n —1) TRl |z| < a,

so that

= () - () e

d) ROC: < |z| < 3. By table lookup we find

h(n) (%)nu(n) + (g)nu(—n— 0.



Assignment 2:

a) We know that

1 z
1 —az!

andX (w) = X(2)|

a"u(n), |2 > a,

so that we conclude(n) = a"u(n).

PR

b) We definey(n) = x(2n) so thaty(n + 3) = 2(2n + 1). From Table 4.5, p.
290, we conclude that

1 W
y(n+3) <= Y (W),

so that we are left with finding an expression 16w).
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Hence,
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c) From Table 4.5 we conclude that

(zxa)(n) <> X(W)X(w) = X*w).
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d) Again from Table 4.5 we conclude that

x(n) cos(zn) RN lX(cu T

3 5 )+1X(w+z).
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Assignment 3:

a) We have
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Figure 3: Magnitude spectrum of,(f).

c) Due to the spectral overlap, aliasing errors occur. Hanef/the sampling
frequency increases, this error will become smaller. Irette@mple at hand,
a sampling frequency of, = 40 Hz will already give reasonable results.

d) SinceX,(f) is not bandlimited, we cannot recovey,(t) out of its samples



|X(f)|7 fs =10Hz

a lfs

f(Hz2)

|
|
|
|
I
|
fo
2

e [ == - -t

Figure 4: Magnitude spectrum of (f) whenf; = 10 Hz.
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Figure 5: Magnitude spectrum of(f) when f, = 20 Hz.
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Figure 6: Magnitude spectrum of(f) when f, = 40 Hz.



Assignment 4.
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H(z) =

Henceby = 1,b; = 0,by = —1,a; = 0 anday, = i

b) By inspection of the stability triangle (see Figure 3,p.1202), we conclude
that the system is stable,(< 1+ a; anda, < 1). Moreover, since, > ‘2—1

we conclude that the system has two complex-conjugated pole
C)
(z+1)(z—1)
(z+35)(z — 34)

H(z) =

We have two zeros at= +1 and two poles at = +1.

im(z)
///’—\.\\
O &
\

v . e re(z)
N L5
N 2//

Figure 7: Pole-zero map df (z).

d) Since the system has two zeroszat 1, the magnitude response will be
zero atw = 0 andw = 7. It reaches a maximum at frequencies= 7 and

w = 2 (closest to the poles) of

/3 +1]-]e/3 — 1]  V2V2 8

/% + 34l 1e2 =33l 333
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Figure 8: Magnitude spectrum éf (w).

The phase response is given by

ZH(w) = Z(e? + 1)+ £L(e? = 1) = ZL(? + 5]) — /(e —

We have atv = 0T that

1 1 T
JHON =04~ — /(14 =j)— /(1—=j) ==
(07) 0+35 (+22) ( 2]) 5
and atw =0~
JHO ) =0-"—s0+1)y—sa-ty-_T
R 27 2/ T Ty
Atw:gwefind
1. 1.
4H(—)=4(J+1)+4(J—1)—4(J+§J)—4(J—§J)

Similarly, we have/H (3) = 0.

e) The steady-state response is given by

. , ]
Je’2" + H(m)e™ = —e/2",

Yss(n) = H( 3

since|H (3)| =5, ZH(%) = 0andH(r) = 0.
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Figure 9: Phase spectrum Hf(w).

Letz(n) = z1(n) + x2(n), wherez, (n) = €/2™ andx,(n) = ™. We then
have that

Y(2) = H(2)X(2) = H(2)X1(2) + H(2)X2(2),

with
z z
X = = ,
1(Z z—el2 zZ—
z z
X = = .
Q(Z) z—€elm z+1
Therefore,

2(z2 = 1) _ 2(z2 = 1)
(Z+D-4)  (e+3)z—350)E-j)

Yi(z) = H(2)X1(2) =

The signaly; (n) can be found using contour integration or partial-fraction
expansion.

Partial-fraction expansion:

Yi(2) 221 A A* B
z (z+350)(z—5i)(z—J) =2+5] =z—35i z2—J

The constantsl and B are found by

1Y, 21
A= lim (z—i—éj) 1(2): lim c :§

7;4»7%]' z Z*}féj (Z - %j)(z - ]) 6’
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. k) . 22-1 8
B = lim(z — _°
O |

so that

5 z z 8 =z
Y _ — —
1(2) 6(z+§j+z_lj>+3z—j’

and we find, by table lookup, that

5 1\" .. 1\" .z 8 .«
- — — —J3n — Jon —_elam
y1(n) 5 ((2) e + (2) e ) + 36

5 /1\" 8 =
= - (—) cos(zn)—i—geﬁn.
—

3\ 2 2

-
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y1e(n)—0 for n—oo  YLss(n)

Similarly, we find fory,(n):

Ya(2) 22 —1 B z—1
r (el (25— 5)
A A*

= -+ -
z+3j zZ—1j
The constant! is found by
1. Yi(2) _ z2—1 1

A= lim (z+ = = lim == —7,
so that
1 z 1 z
Yo(2) = (= —J +(z+J )

The inverseZ-transform is found by table lookup, and we conclude that

) = (5 - 5) (;) e (;)

= (3)" et +26m3m).

~
y2,tr (n)—0 for n—oo

Note thaty, «(n) = 0, which is consistent with the results obtained in part
e.
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