Dear all.

The solutions given in these notes differ in two places from the ones given last Monday when I worked out the example exam.

Firstly, the answer given in Assignment 2b, the Fourier transform of x(2n+1), was not correct. I took this example from the book (Problem 4.22a, p. 298), including the answer given in the solution manual. While carefully writing out the solutions for these notes, I realized that there was a mistake in the solutions given by Proakis. Actually, the right answer was already given during the instructions on October 6 where a similar problem (Problem 4.17e, p. 297) was discussed. At that time I didn't have the solution manual, which nicely shows that you can better think for yourself, rather than copying results from others \odot

The second difference is in Assignment 3, in particular 3a. Although the results are right, the way I derived the result is not correct. To avoid these problems (which I will explain below), I changed the question as follows:

Consider the continuous-time signal

$$x_a(t) = \begin{cases} e^{-\alpha t} e^{-j2\pi f_0 t}, & t \ge 0 \\ 0, & t < 0 \end{cases}, \quad \alpha > 0.$$

a) Show that

$$X_a(f) = \frac{1}{j2\pi(f+f_0) + \alpha}.$$

Note that for $\alpha \to 0$, we are back at the problem as it was originally posted.

The problem we have when $\alpha=0$ is that that signal has infinite energy so that it is tricky to compute the Fourier transform (the function is not integrable). Indeed, the energy of $x_a(t)$ as given above is

$$\int_{-\infty}^{\infty} |x_a(t)|^2 dt = \int_0^{\infty} e^{-2\alpha t} dt = \left. \frac{-1}{2\alpha} e^{-2\alpha t} \right|_0^{\infty} = \frac{1}{2\alpha},$$

which is finite for $\alpha > 0$, but becomes infinite for $\alpha = 0$.

Let us have a look at the solution of Assignment 3a in these notes. We have

$$\int_{0}^{\infty} e^{-(j2\pi(f+f_{0})+\alpha)t} dt = \frac{-1}{j2\pi(f+f_{0})+\alpha} e^{-(j2\pi(f+f_{0})+\alpha)t} \Big|_{0}^{\infty}$$

$$= 0 - \frac{-1}{j2\pi(f+f_{0})+\alpha}$$

$$= \frac{1}{j2\pi(f+f_{0})+\alpha}.$$

This derivation is *only* valid for $\alpha > 0$ *not* for $\alpha = 0$. So,

$$\frac{-1}{j2\pi(f+f_0)} e^{-j2\pi(f+f_0)t} \Big|_0^{\infty} \neq 0 - \frac{-1}{j2\pi(f+f_0)},$$

as I wrote down last week. The reason for this is that

$$\lim_{t \to \infty} e^{-jt} \neq 0,$$

since the function e^{-jt} is 2π -periodic. This in contrast to

$$\lim_{t \to \infty} e^{-t} = 0.$$

Now coming back to the solution of Assignment 3a, we conclude that

$$\frac{-1}{j2\pi(f+f_0)+\alpha} e^{-(j2\pi(f+f_0)+\alpha)t} \Big|_0^{\infty} = \frac{-1}{j2\pi(f+f_0)-\alpha} e^{-j2\pi(f+f_0)t} e^{-\alpha t} \Big|_0^{\infty}$$
$$= 0 - \frac{-1}{j2\pi(f+f_0)-\alpha},$$

if and only if $\alpha>0$ since in that case the term $e^{-\alpha t}\to 0$ as $t\to\infty$ (note that $|e^{-j2\pi(f+f_0)t}|=1$).

In order to correctly prove the result for $\alpha=0$, we have to use a limiting argument. That is,

$$x_a(t) = \begin{cases} e^{-j2\pi f_0 t}, & t \ge 0 \\ 0, & t < 0 \end{cases} = \lim_{\alpha \downarrow 0} \begin{cases} e^{-\alpha t} e^{-j2\pi f_0 t}, & t \ge 0 \\ 0, & t < 0 \end{cases},$$

so that

$$X_a(f) = \lim_{\alpha \downarrow 0} \frac{1}{j2\pi(f + f_0) + \alpha} = \frac{1}{j2\pi(f + f_0)}, \quad f \in \mathbb{R} \setminus \{-f_0\}.$$

Some additional remarks. I do not expect you to derive Fourier transforms using limiting arguments. When writing down the original assignment in the weekend I simply overlooked the fact that the signal was of infinite energy. The signals you can expect at the exam will be of finite energy.

Richard

Assignment 1:

a)

$$H(z) = \frac{-z}{z^2 - 2z + \frac{3}{4}} = \frac{-z}{(z - \frac{1}{2})(z - \frac{3}{2})}.$$

Hence, a zero at z=0 and two poles at $z=\frac{1}{2}$ and $z=\frac{3}{2}$.

Figure 1: Pole-zero map of H(z).

b) ROC $|z| > \frac{3}{2}$. Hence, we have a causal solution and

$$h(n) = \frac{1}{2\pi j} \oint_C H(z) z^{n-1} dz = \frac{1}{2\pi j} \oint_C \frac{-z^n}{(z - \frac{1}{2})(z - \frac{3}{2})} dz,$$

where C is a counterclockwise closed contour in the region of convergence $|z| > \frac{3}{2}$. For $n \ge 0$, we have two poles inside C, so that

$$h(n) = \operatorname{Res}_{z = \frac{1}{2}} H(z) z^{n-1} + \operatorname{Res}_{z = \frac{3}{2}} H(z) z^{n-1}$$

$$= \lim_{z \to \frac{1}{2}} (z - \frac{1}{2}) H(z) z^{n-1} + \lim_{z \to \frac{3}{2}} (z - \frac{3}{2}) H(z) z^{n-1}$$

$$= \lim_{z \to \frac{1}{2}} \frac{-z^n}{z - \frac{3}{2}} + \lim_{z \to \frac{3}{2}} \frac{-z^n}{z - \frac{1}{2}} = \left(\frac{1}{2}\right)^n - \left(\frac{3}{2}\right)^n.$$

c) ROC $|z|<\frac{1}{2}.$ Hence, we have an anti-causal solution.

$$H(z) = \frac{-z}{(z - \frac{1}{2})(z - \frac{3}{2})} = \frac{-z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{3}{2}z^{-1})},$$

so that, with $p = z^{-1}$,

$$H(p) = \frac{-p}{(1 - \frac{1}{2}p)(1 - \frac{3}{2}p)} = \frac{-\frac{4}{3}p}{(p-2)(p - \frac{2}{3})}.$$

Hence, H(p) has poles at $p=\frac{2}{3}$ and p=2, which both lie inside the region of convergence, which is |p|>2 ($|z|<\frac{1}{2}$ implies |p|>2).

Figure 2: Pole-zero map

Since we have an anti-causal solution, we use

$$h(n) = \frac{1}{2\pi j} \oint_{C'} H(p) p^{-n-1} dp = \frac{1}{2\pi j} \oint_{C'} \frac{-\frac{4}{3} p^{-n}}{(p-2)(p-\frac{2}{3})} dp,$$

where C' is a counterclockwise closed contour in the region of convergence |p| > 2. For $n \le 0$, we have two poles inside C' so that

$$h(n) = \mathop{\rm Res}_{p=\frac{2}{3}} H(p) p^{-n-1} + \mathop{\rm Res}_{p=2} H(p) p^{-n-1}$$
$$= \lim_{p \to \frac{2}{3}} \frac{-\frac{4}{3} p^{-n}}{p-2} + \lim_{p \to 2} \frac{-\frac{4}{3} p^{-n}}{p-\frac{2}{3}} = \left(\frac{3}{2}\right)^n - \left(\frac{1}{2}\right)^n.$$

d) ROC $\frac{1}{2} < |z| < \frac{3}{2}$. In this case we have a causal and anti-causal contribution to the total solution. We have

$$h(n) = \underbrace{\frac{1}{2\pi j} \oint_C \frac{-z^n}{(z - \frac{1}{2})(z - \frac{3}{2})} dz}_{\text{1 pole inside } C \text{ for } n \ge 0} = \underbrace{\frac{1}{2\pi j} \oint_{C'} \frac{-\frac{4}{3}p^{-n}}{(p - 2)(p - \frac{2}{3})} dp}_{\text{1 pole inside } C' \text{ for } n \le 0},$$

where C is taken in $\frac{1}{2}<|z|<\frac{3}{2}$ and C' in $\frac{2}{3}<|p|<2$. Hence,

$$n \ge 0$$
: $h(n) = \operatorname{Res}_{p=\frac{1}{2}} H(z) z^{n-1} \stackrel{\text{(see b)}}{=} \left(\frac{1}{2}\right)^n$,

$$n \le 0: \quad h(n) = \mathop{\rm Res}_{p = \frac{2}{3}} H(p) p^{-n-1} \stackrel{\text{(see c)}}{=} \left(\frac{3}{2}\right)^n.$$

Note that we have a stable solution in case the region of convergence is $\frac{1}{2} < |z| < \frac{3}{2}$, since this is the only region containing the unit circle.

Alternative solution: Partial-fraction expansion

$$\frac{H(z)}{z} = \frac{-1}{(z - \frac{1}{2})(z - \frac{3}{2})} = \frac{A}{z - \frac{1}{2}} + \frac{B}{z - \frac{3}{2}}.$$

The constants A and B are found by

$$A = \lim_{z \to \frac{1}{2}} (z - \frac{1}{2}) \frac{H(z)}{z} = \lim_{z \to \frac{1}{2}} \frac{-1}{z - \frac{3}{2}} = 1,$$

$$B = \lim_{z \to \frac{3}{2}} \left(z - \frac{3}{2}\right) \frac{H(z)}{z} = \lim_{z \to \frac{3}{2}} \frac{-1}{z - \frac{1}{2}} = -1,$$

and we conclude that

$$H(z) = \frac{z}{z - \frac{1}{2}} - \frac{z}{z - \frac{3}{2}}.$$

b) ROC $|z|>\frac{3}{2}$ and thus $|z|>\frac{1}{2}$. By table lookup (see Table 3.3, p. 170) we find that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \ |z| > a,$$

so that

$$h(n) = \left(\left(\frac{1}{2}\right)^n - \left(\frac{3}{2}\right)^n\right)u(n).$$

c) ROC $|z|<\frac{1}{2}$ and thus $|z|<\frac{3}{2}.$ By table lookup we find that

$$-a^n u(-n-1) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-az^{-1}} = \frac{z}{z-a}, |z| < a,$$

so that

$$h(n) = \left(\left(\frac{3}{2}\right)^n - \left(\frac{1}{2}\right)^n\right)u(-n-1).$$

d) ROC $\frac{1}{2} < |z| < \frac{3}{2}$. By table lookup we find

$$h(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{3}{2}\right)^n u(-n-1).$$

Assignment 2:

a) We know that

$$\frac{1}{1 - az^{-1}} \stackrel{\mathcal{Z}}{\longleftrightarrow} a^n u(n), |z| > a,$$

and $X(\omega)=\left.X(z)\right|_{z=e^{j\omega}}$, so that we conclude $x(n)=a^nu(n)$.

b) We define y(n) = x(2n) so that $y(n + \frac{1}{2}) = x(2n + 1)$. From Table 4.5, p. 290, we conclude that

$$y(n+\frac{1}{2}) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{j\frac{\omega}{2}}Y(\omega),$$

so that we are left with finding an expression for $Y(\omega)$.

$$\begin{split} Y(\omega) &= \sum_{n=-\infty}^{\infty} y(n)e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x(2n)e^{-j\omega n} \\ &= \sum_{n=-\infty}^{\infty} x(2n)e^{-j\frac{\omega}{2}2n} = \sum_{m \text{ even}} x(m)e^{-j\frac{\omega}{2}m} \\ &= \sum_{m=-\infty}^{\infty} \frac{1}{2}(1+(-1)^m)x(m)e^{-j\frac{\omega}{2}m} \\ &= \frac{1}{2}\sum_{m=-\infty}^{\infty} x(m)e^{-j\frac{\omega}{2}m} + \frac{1}{2}\sum_{m=-\infty}^{\infty} (-1)^m x(m)e^{-j\frac{\omega}{2}m} \\ &= \frac{1}{2}\sum_{m=-\infty}^{\infty} x(m)e^{-j\frac{\omega}{2}m} + \frac{1}{2}\sum_{m=-\infty}^{\infty} x(m)e^{-j(\frac{\omega}{2}-\pi)m} \\ &= \frac{1}{2}X\left(\frac{\omega}{2}\right) + \frac{1}{2}X\left(\frac{\omega}{2} - \pi\right). \end{split}$$

Hence,

$$x(2n+1) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{e^{j\frac{\omega}{2}}}{2} \left(X\left(\frac{\omega}{2}\right) + X\left(\frac{\omega}{2} - \pi\right) \right).$$

c) From Table 4.5 we conclude that

$$(x*x)(n) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)X(\omega) = X^2(\omega).$$

d) Again from Table 4.5 we conclude that

$$x(n)\cos(\frac{\pi}{3}n) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2}X(\omega - \frac{\pi}{3}) + \frac{1}{2}X(\omega + \frac{\pi}{3}).$$

Assignment 3:

a) We have

$$X_a(f) = \int_{-\infty}^{\infty} x_a(t)e^{-j2\pi ft}dt = \int_0^{\infty} e^{-(j2\pi(f+f_0)+\alpha)t}dt$$

$$= \frac{-1}{j2\pi(f+f_0)+\alpha} e^{-(j2\pi(f+f_0)+\alpha)t}\Big|_0^{\infty}$$

$$= 0 - \frac{-1}{j2\pi(f+f_0)+\alpha}$$

$$= \frac{1}{j2\pi(f+f_0)+\alpha}.$$

b)

Figure 3: Magnitude spectrum of $X_a(f)$.

- c) Due to the spectral overlap, aliasing errors occur. However, if the sampling frequency increases, this error will become smaller. In the example at hand, a sampling frequency of $f_s=40~{\rm Hz}$ will already give reasonable results.
- d) Since $X_a(f)$ is *not* bandlimited, we cannot recover $x_a(t)$ out of its samples x(n).

Figure 4: Magnitude spectrum of X(f) when $f_s=10~\mathrm{Hz}.$

Figure 5: Magnitude spectrum of X(f) when $f_s=20~\mathrm{Hz}.$

Figure 6: Magnitude spectrum of X(f) when $f_s=40~\mathrm{Hz}$.

Assignment 4:

a)

$$H(z) = \frac{z^2 - 1}{z^2 + \frac{1}{4}} = \frac{1 - z^{-2}}{1 + \frac{1}{4}z^{-2}} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}.$$

Hence, $b_0 = 1$, $b_1 = 0$, $b_2 = -1$, $a_1 = 0$ and $a_2 = \frac{1}{4}$.

b) By inspection of the stability triangle (see Figure 3.5.1, p. 202), we conclude that the system is stable ($a_1 < 1 + a_2$ and $a_2 < 1$). Moreover, since $a_2 > \frac{a_1^2}{4}$, we conclude that the system has two complex-conjugated poles.

c)

$$H(z) = \frac{(z+1)(z-1)}{(z+\frac{1}{2}j)(z-\frac{1}{2}j)}.$$

We have two zeros at $z = \pm 1$ and two poles at $z = \pm \frac{1}{2}j$.

Figure 7: Pole-zero map of H(z).

d) Since the system has two zeros at $z\pm 1$, the magnitude response will be zero at $\omega=0$ and $\omega=\pi$. It reaches a maximum at frequencies $\omega=\frac{\pi}{2}$ and $\omega=\frac{3\pi}{2}$ (closest to the poles) of

$$\frac{|e^{j\frac{\pi}{2}} + 1| \cdot |e^{j\frac{\pi}{2}} - 1|}{|e^{j\frac{\pi}{2}} + \frac{1}{2}j| \cdot |e^{j\frac{\pi}{2}} - \frac{1}{2}j|} = \frac{\sqrt{2}\sqrt{2}}{\frac{3}{2}\frac{1}{2}} = \frac{8}{3}.$$

Figure 8: Magnitude spectrum of $H(\omega)$.

The phase response is given by

$$\angle H(\omega) = \angle (e^{j\omega} + 1) + \angle (e^{j\omega} - 1) - \angle (e^{j\omega} + \frac{1}{2}j) - \angle (e^{j\omega} - \frac{1}{2}j).$$

We have at $\omega = 0^+$ that

$$\angle H(0^+) = 0 + \frac{\pi}{2} - \angle (1 + \frac{1}{2}j) - \angle (1 - \frac{1}{2}j) = \frac{\pi}{2},$$

and at $\omega = 0^-$

$$\angle H(0^-) = 0 - \frac{\pi}{2} - \angle (1 + \frac{1}{2}j) - \angle (1 - \frac{1}{2}j) = -\frac{\pi}{2}.$$

At $\omega = \frac{\pi}{2}$ we find

$$\angle H(\frac{\pi}{2}) = \angle (j+1) + \angle (j-1) - \angle (j+\frac{1}{2}j) - \angle (j-\frac{1}{2}j)$$
$$= \frac{\pi}{4} + \frac{3\pi}{4} - \frac{\pi}{2} - \frac{\pi}{2} = 0.$$

Similarly, we have $\angle H(\frac{3\pi}{2}) = 0$.

e) The steady-state response is given by

$$y_{\rm ss}(n) = H(\frac{\pi}{2})e^{j\frac{\pi}{2}n} + H(\pi)e^{i\pi n} = \frac{8}{3}e^{j\frac{\pi}{2}n},$$

since $|H(\frac{\pi}{2})| = \frac{8}{3}$, $\angle H(\frac{\pi}{2}) = 0$ and $H(\pi) = 0$.

Figure 9: Phase spectrum of $H(\omega)$.

f) Let $x(n)=x_1(n)+x_2(n)$, where $x_1(n)=e^{j\frac{\pi}{2}n}$ and $x_2(n)=e^{i\pi n}$. We then have that

$$Y(z) = H(z)X(z) = H(z)X_1(z) + H(z)X_2(z),$$

with

$$X_1(z) = \frac{z}{z - e^{j\frac{\pi}{2}}} = \frac{z}{z - j},$$

$$X_2(z) = \frac{z}{z - e^{j\pi}} = \frac{z}{z + 1}.$$

Therefore,

$$Y_1(z) = H(z)X_1(z) = \frac{z(z^2 - 1)}{(z^2 + \frac{1}{4})(z - j)} = \frac{z(z^2 - 1)}{(z + \frac{1}{2}j)(z - \frac{1}{2}j)(z - j)}.$$

The signal $y_1(n)$ can be found using contour integration or partial-fraction expansion.

Partial-fraction expansion:

$$\frac{Y_1(z)}{z} = \frac{z^2 - 1}{(z + \frac{1}{2}j)(z - \frac{1}{2}j)(z - j)} = \frac{A}{z + \frac{1}{2}j} + \frac{A^*}{z - \frac{1}{2}j} + \frac{B}{z - j}.$$

The constants A and B are found by

$$A = \lim_{z \to -\frac{1}{2}j} \left(z + \frac{1}{2}j\right) \frac{Y_1(z)}{z} = \lim_{z \to -\frac{1}{2}j} \frac{z^2 - 1}{\left(z - \frac{1}{2}j\right)(z - j)} = \frac{5}{6},$$

$$B = \lim_{z \to j} (z - j) \frac{Y_1(z)}{z} = \lim_{z \to j} \frac{z^2 - 1}{z^2 + \frac{1}{4}} = \frac{8}{3},$$

so that

$$Y_1(z) = \frac{5}{6} \left(\frac{z}{z + \frac{1}{2}j} + \frac{z}{z - \frac{1}{2}j} \right) + \frac{8}{3} \frac{z}{z - j},$$

and we find, by table lookup, that

$$y_1(n) = \frac{5}{6} \left(\left(\frac{1}{2} \right)^n e^{-j\frac{\pi}{2}n} + \left(\frac{1}{2} \right)^n e^{j\frac{\pi}{2}n} \right) + \frac{8}{3} e^{j\frac{\pi}{2}n}$$

$$= \underbrace{\frac{5}{3} \left(\frac{1}{2} \right)^n \cos(\frac{\pi}{2}n)}_{y_{1,\text{tr}}(n) \to 0 \text{ for } n \to \infty} + \underbrace{\frac{8}{3} e^{j\frac{\pi}{2}n}}_{y_{1,\text{ss}}(n)}.$$

Similarly, we find for $y_2(n)$:

$$\frac{Y_2(z)}{z} = \frac{z^2 - 1}{(z + \frac{1}{2}j)(z - \frac{1}{2}j)(z + 1)} = \frac{z - 1}{(z + \frac{1}{2}j)(z - \frac{1}{2}j)}$$
$$= \frac{A}{z + \frac{1}{2}j} + \frac{A^*}{z - \frac{1}{2}j}.$$

The constant A is found by

$$A = \lim_{z \to -\frac{1}{2}j} \left(z + \frac{1}{2}j\right) \frac{Y_2(z)}{z} = \lim_{z \to -\frac{1}{2}j} \frac{z - 1}{z - \frac{1}{2}j} = \frac{1}{2} - j,$$

so that

$$Y_2(z) = (\frac{1}{2} - j)\frac{z}{z + \frac{1}{2}j} + (\frac{1}{2} + j)\frac{z}{z - \frac{1}{2}j}.$$

The inverse \mathcal{Z} -transform is found by table lookup, and we conclude that

$$y_2(n) = \left(\frac{1}{2} - j\right) \left(\frac{1}{2}\right)^n e^{-j\frac{\pi}{2}n} + \left(\frac{1}{2} + j\right) \left(\frac{1}{2}\right)^n e^{j\frac{\pi}{2}n}$$
$$= \underbrace{\left(\frac{1}{2}\right)^n \left(\cos(\frac{\pi}{2}n) + 2\sin(\frac{\pi}{2}n)\right)}_{y_2 + r(n) \to 0 \text{ for } n \to \infty}.$$

Note that $y_{2,ss}(n) = 0$, which is consistent with the results obtained in part e.