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Assignment 1.

a) Since the system is causal, the region of convergence isxterior of a
circle. Hence, the ROC is given by| > a.

b)
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c) A causal system is BIBO stable if and only if all poles lisige the unit
circle. Sincga| < 1 we conclude that the system is indead BIBO stable.

d) ROC|z| > a. Hence, we have a causal solution. In that case we have
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whereC' is a counterclockwise closed contour in the region of caymece
|z| > a. Forn > 0, we have only two poles insid&, so that

h(n) = Res H(2)2" ' + Res H(z)z"*
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Forn = 0, we can apply the initial value theorem for causal systemshwh
states that

h(0) = lim H(z) = c.
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Alternatively, we can findv(0) by contour integration. Fot = 0, we have
poles at: = 0,z = aj andz = —ayj so that
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Alternative solution: Partial-fraction expansion
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The constantsl and B are found by
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Since the ROC i$z| > «a, we find by table lookup (see Table 3.3) that
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e) Sinceh(0) = ¢ we conclude that = 1.

f) The frequency response of the system is given by

1+ e 2%
Hw)=c———5—.
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The system is a notch filter. Since the system has zeros-atandz = —j,
the magnitude response will be zero.at= 7 andw =

—75, respectively.
At frequencyw = 0, we have
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Figure 1: Magnitude response Hf(w).



Assignment 2:

[ Xa(f)] £Xa(f)

~---|2rB

Figure 2: Magnitude a) and phase b) spectrum.

a) The magnitude and phase spectrum are shown in Figure @) arespec-
tively, so that

e~i2vf for |w| < B
Xa(f) = { 0, otherwise

Therefore,

a(t) = /_Oo Xa(f)e It df
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b) Sincef,.. = B Hz, we conclude thaf, > 2B5.

c) The relation between the spectrum of the discrete-tigneasic and that of
the continuous-time signal, is given by

X(f) = fs Z Xa(f+kfs)'
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Figure 3 shows the result fgt, > 2B.
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Figure 3: Magnitude spectrum of(f) (fs > 2B).

d) We have
h(n) = ho(nTs) = 2 cos(2m fo(nTs — 1)).

Clearly, sincef, = B < 2B we will have aliasing. Ideal interpolation
corresponds to ideal low-pass filtering with a cut-off fregay equal to
fe = fs/2 = B/2. In order to find the frequency at which the harmonic will
be reconstructed, we have to compute which of the alias émgjas falls
within the interval| f| < B/2. We have

cos(2m fo(nTs — 1)) = cos(—2m fo(nTs — 1))

= cos(27(— fonTs + fo))
— cos(2r((fy — JoJnT. + o).

Since0 < f; — fo = B— fo < B/2whenevelB/2 < f, < B, we conclude
that

]Ala(t) = 2008(277'((fs - fO)t + f0>>7

e) Itis not possible to sample the spectrafff) and to reconstruct(n) out
of these spectral samples singgt) has an infinite support. The process of
samplingX ( /) will therefore introduce temporal aliasing.



Assignment 3:

a) Since
y(n) = x(n) +z(n - 3),
we have
2+ 1
z3

H(z)=1+27=
The filter has three (trivial) poles at the origin and threeget

B=—1l=e"e?™ = 4 =GR £ =0,1,2.

Figure 4: Pole-zero map df (z).

b) The frequency response is given by
, , : : . 3
Hw)=14¢e 7 = eIz <6J%“’ + e‘jgw> — ¢ I3 cos(iw).
Hence the magnitude and phase response are given by
3
[H(w)] = 2| cos(5w)l,
and
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Figure 5: Magnitude (top plot) and phase (bottom plot) resgo

2 3
with the result obtained in a)).

There are zeros v = Z mod 7 orw = % mod 3 (which is consistent

c) The following input signal
z(n) = 21(n) + z2(n) + x3(n) = 6(n) + &5™u(n) + ej%ﬂnu(n),

consists of a unit impulse and two harmonics with frequeswie= % and
w3 = %” The steady-state response of the system is given by

es() = Tim y(n) = H(w)s(n) + H(ws)as(n),
since the unit impulse is zero far > 0. SinceH (w;) = H(%) = 0 and
H(ws) = H(3) = 2, we conclude that
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Yss(n) = 2e73 ™.

d) We have
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Y(z) = H(2) (X1(2) + Xa(2) + X3(2)) = Yi(2) + Ya(2) + Y3(2),

Yi(2) = H(2)Xi(2) =1+ 27,
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241
2(z—elT)

Y3(2) = H(2)X5(2) =

Obviously, we havey, (n) = 6(n) + d(n — 3). The inverseZ-transform of
the other terms can be computed using, for example, contbegration.
For computingyz(n), we have
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whereC' is a counterclockwise closed contour in the region of cayeece
|z| > 1. Forn > 2, we have only one pole insidg, so that
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Forn = 1 we have a double pole at the origin so that

y2(1) = Res Y5(2) + ResYa(2)
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The valuey,(0) is easily found by

y2(0) = Tim Y5(2) = 1.
Note that by inspection of the difference equation of theesys(y(n) =
z(n) + z(n — 3)), we can conclude that for < 3, the output is simply
z(n) (z(n — 3) = 0 for n < 3 sincex(n) is causal). Only aften = 3, the
second termz#(n — 3)) starts playing a role, thereby creating the zero in the
frequency response for the inptif(n) and a gain of 2 for the inputs(n).
So, we conclude thaf(n) = 0 for n < 0, y2(n) = xo(n) forn = 0,1,2
andys(n) = 0 (= y1(n)) for n > 2. Similarly, we find forys(n) that
ys(n) = 0for n < 0, ys(n) = z3(n) forn = 0,1,2 andys(n) = 26757
(= y2ss(n)) for n > 2.



