Solutions examination **Random Signal Processing** (IN4309)

Part I: Digital Signal Processing

November 6, 2009 (14:00 - 17:00)

Assignment 1:

a) Since the system is causal, the region of convergence is the exterior of a circle. Hence, the ROC is given by |z| > a.

b)

$$H(z) = c \frac{(z-j)(z+j)}{(z-aj)(z+aj)} = c \frac{z^2+1}{z^2+a^2}$$

- c) A causal system is BIBO stable if and only if all poles lie inside the unit circle. Since |a| < 1 we conclude that the system is indead BIBO stable.
- d) ROC |z| > a. Hence, we have a causal solution. In that case we have

$$h(n) = \frac{1}{2\pi j} \oint_C H(z) z^{n-1} dz = \frac{1}{2\pi j} \oint_C c \frac{(z^2 + 1)z^{n-1}}{z^2 + a^2} dz,$$

where C is a counterclockwise closed contour in the region of convergence |z| > a. For n > 0, we have only two poles inside C, so that

$$h(n) = \underset{z=aj}{\operatorname{Res}} H(z) z^{n-1} + \underset{z=-aj}{\operatorname{Res}} H(z) z^{n-1}$$

$$= \underset{z\to aj}{\lim} (z - aj) H(z) z^{n-1} + \underset{z\to -aj}{\lim} (z + aj) H(z) z^{n-1}$$

$$= \underset{z\to aj}{\lim} c \frac{(z^2 + 1) z^{n-1}}{z + aj} + \underset{z\to -aj}{\lim} c \frac{(z^2 + 1) z^{n-1}}{z - aj}$$

$$= c \frac{1 - a^2}{2aj} (aj)^{(n-1)} + c \frac{1 - a^2}{-2aj} (-aj)^{(n-1)}$$

$$= c \frac{a^2 - 1}{2a^2} (aj)^n + c \frac{a^2 - 1}{2a^2} (-aj)^n$$

$$= c \frac{a^2 - 1}{2a^2} a^n e^{j\frac{\pi}{2}n} + c \frac{a^2 - 1}{2a^2} a^n e^{-j\frac{\pi}{2}n}$$

$$= c \frac{a^2 - 1}{a^2} a^n \cos(\frac{\pi}{2}n).$$

For n=0, we can apply the initial value theorem for causal systems which states that

$$h(0) = \lim_{z \to \infty} H(z) = c.$$

Alternatively, we can find h(0) by contour integration. For n=0, we have poles at z=0, z=aj and z=-aj so that

$$h(0) = \mathop{\rm Res}_{z=0} H(z)z^{-1} + \mathop{\rm Res}_{z=aj} H(z)z^{-1} + \mathop{\rm Res}_{z=-aj} H(z)z^{-1}$$

$$= \lim_{z \to 0} c \frac{z^2 + 1}{z^2 + a^2} + \lim_{z \to aj} c \frac{z^2 + 1}{z(z + aj)} + \lim_{z \to -aj} c \frac{z^2 + 1}{z(z - aj)}$$

$$= \frac{c}{a^2} + c \frac{1 - a^2}{-2a^2} + c \frac{1 - a^2}{-2a^2} = c.$$

Alternative solution: Partial-fraction expansion

$$\frac{H(z)}{z} = c\frac{z^2 + 1}{z(z^2 + a^2)} = \frac{A}{z - aj} + \frac{A^*}{z + aj} + \frac{B}{z}.$$

The constants A and B are found by

$$A = \lim_{z \to aj} (z - aj) \frac{H(z)}{z} = \lim_{z \to aj} c \frac{z^2 + 1}{z(z + aj)} = c \frac{1 - a^2}{-2a^2} = A^*,$$

$$B = \lim_{z \to 0} z \frac{H(z)}{z} = \lim_{z \to 0} c \frac{z^2 + 1}{z^2 + a^2} = \frac{c}{a^2},$$

and we conclude that

$$H(z) = c\frac{a^2 - 1}{2a^2} \frac{z}{z - aj} + c\frac{a^2 - 1}{2a^2} \frac{z}{z + aj} + \frac{c}{a^2}.$$

Since the ROC is |z| > a, we find by table lookup (see Table 3.3) that

$$\alpha^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - \alpha z^{-1}} = \frac{z}{z - \alpha}, \ |z| > \alpha,$$

and

$$\delta(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} 1 \text{ for all } z,$$

so that

$$h(n) = c \frac{a^2 - 1}{2a^2} ((aj)^n + (-aj)^n) u(n) + \frac{c}{a^2} \delta(n)$$

$$= c \frac{a^2 - 1}{2a^2} a^n \left(e^{j\frac{\pi}{2}n} + e^{-j\frac{\pi}{2}n} \right) u(n) + \frac{c}{a^2} \delta(n)$$

$$= c \frac{a^2 - 1}{a^2} a^n \cos(\frac{\pi}{2}n) + \frac{c}{a^2} \delta(n)$$

- e) Since h(0) = c we conclude that c = 1.
- f) The frequency response of the system is given by

$$H(\omega) = c \frac{1 + e^{-2j\omega}}{1 + a^2 e^{-2j\omega}}.$$

The system is a notch filter. Since the system has zeros at z=j and z=-j, the magnitude response will be zero at $\omega=\frac{\pi}{2}$ and $\omega=-\frac{\pi}{2}$, respectively. At frequency $\omega=0$, we have

$$H(0) = c \frac{2}{1 + a^2}.$$

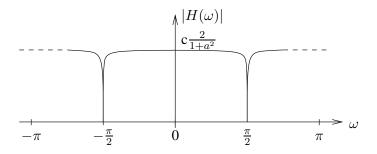


Figure 1: Magnitude response of $H(\omega)$.

Assignment 2:

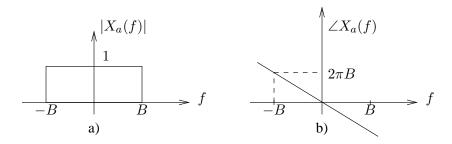


Figure 2: Magnitude a) and phase b) spectrum.

a) The magnitude and phase spectrum are shown in Figure 2a) and b), respectively, so that

$$X_a(f) = \left\{ \begin{array}{ll} e^{-j2\pi f}, & \text{ for } |\omega| \leq B \\ 0, & \text{ otherwise} \end{array} \right..$$

Therefore,

$$x_a(t) = \int_{-\infty}^{\infty} X_a(f) e^{j2\pi f t} df$$

$$= \int_{-B}^{B} e^{j2\pi f(t-1)} df$$

$$= \frac{1}{j2\pi (t-1)} e^{j2\pi f(t-1)} \Big|_{-B}^{B}$$

$$= \frac{1}{j2\pi (t-1)} \left(e^{j2\pi B(t-1)} - e^{-j2\pi f(t-1)} \right)$$

$$= \frac{1}{\pi (t-1)} \sin(2\pi B(t-1)).$$

- b) Since $f_{\text{max}} = B$ Hz, we conclude that $f_s > 2B$.
- c) The relation between the spectrum of the discrete-time signal x and that of the continuous-time signal x_a is given by

$$X(f) = f_s \sum_{k=-\infty}^{\infty} X_a(f + kf_s).$$

Figure 3 shows the result for $f_s > 2B$.

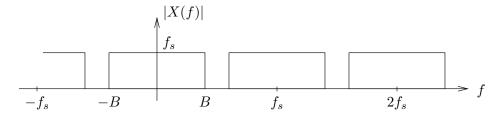


Figure 3: Magnitude spectrum of X(f) ($f_s > 2B$).

d) We have

$$h(n) = h_a(nT_s) = 2\cos(2\pi f_0(nT_s - 1)).$$

Clearly, since $f_s = B < 2B$ we will have aliasing. Ideal interpolation corresponds to ideal low-pass filtering with a cut-off frequency equal to $f_c = f_s/2 = B/2$. In order to find the frequency at which the harmonic will be reconstructed, we have to compute which of the alias frequencies falls within the interval |f| < B/2. We have

$$\cos(2\pi f_0(nT_s - 1)) = \cos(-2\pi f_0(nT_s - 1))$$

$$= \cos(2\pi (-f_0 nT_s + f_0))$$

$$= \cos(2\pi ((f_s - f_0) nT_s + f_0)).$$

Since $0 < f_s - f_0 = B - f_0 < B/2$ whenever $B/2 < f_0 < B$, we conclude that

$$\hat{h}_a(t) = 2\cos(2\pi((f_s - f_0)t + f_0)),$$

e) It is not possible to sample the spectrum X(f) and to reconstruct x(n) out of these spectral samples since $x_a(t)$ has an infinite support. The process of sampling X(f) will therefore introduce temporal aliasing.

Assignment 3:

a) Since

$$y(n) = x(n) + x(n-3),$$

we have

$$H(z) = 1 + z^{-3} = \frac{z^3 + 1}{z^3}.$$

The filter has three (trivial) poles at the origin and three zeros at

$$z_k^3 = -1 = e^{j\pi} e^{j2\pi k} \quad \Rightarrow \quad z_k = e^{j(\frac{\pi}{3} + \frac{2\pi}{3}k)} \quad k = 0, 1, 2.$$

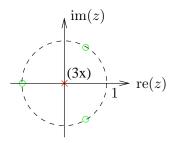


Figure 4: Pole-zero map of H(z).

b) The frequency response is given by

$$H(\omega) = 1 + e^{-j3\omega} = e^{-j\frac{3}{2}\omega} \left(e^{j\frac{3}{2}\omega} + e^{-j\frac{3}{2}\omega} \right) = 2e^{-j\frac{3}{2}\omega} \cos(\frac{3}{2}\omega).$$

Hence the magnitude and phase response are given by

$$|H(\omega)| = 2|\cos(\frac{3}{2}\omega)|,$$

and

$$\angle H(\omega) = -\frac{3}{2}\omega + \underbrace{\angle\cos(\frac{3}{2}\omega)}_{0 \text{ if } \ge 0 \text{ and } \pi \text{ if } < 0}.$$

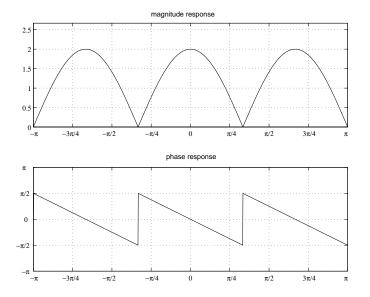


Figure 5: Magnitude (top plot) and phase (bottom plot) response

There are zeros at $\frac{3}{2}\omega = \frac{\pi}{2} \mod \pi$ or $\omega = \frac{\pi}{3} \mod \frac{2\pi}{3}$ (which is consistent with the result obtained in a)).

c) The following input signal

$$x(n) = x_1(n) + x_2(n) + x_3(n) = \delta(n) + e^{j\frac{\pi}{3}n}u(n) + e^{j\frac{2\pi}{3}n}u(n),$$

consists of a unit impulse and two harmonics with frequencies $\omega_2=\frac{\pi}{3}$ and $\omega_3=\frac{2\pi}{3}$. The steady-state response of the system is given by

$$y_{ss}(n) = \lim_{n \to \infty} y(n) = H(\omega_2)x_2(n) + H(\omega_3)x_3(n),$$

since the unit impulse is zero for n>0. Since $H(\omega_2)=H(\frac{\pi}{3})=0$ and $H(\omega_3)=H(\frac{2\pi}{3})=2$, we conclude that

$$y_{\rm ss}(n) = 2e^{j\frac{2\pi}{3}n}.$$

d) We have

$$X(z) = X_1(z) + X_2(z) + X_3(z) = 1 + \frac{z}{z - e^{j\frac{\pi}{3}}} + \frac{z}{z - e^{j\frac{2\pi}{3}}},$$

so that

$$Y(z) = H(z)(X_1(z) + X_2(z) + X_3(z)) = Y_1(z) + Y_2(z) + Y_3(z),$$

where

$$Y_1(z) = H(z)X_1(z) = 1 + z^{-3},$$

$$Y_2(z) = H(z)X_2(z) = \frac{z^3 + 1}{z^2(z - e^{j\frac{\pi}{3}})},$$

and

$$Y_3(z) = H(z)X_3(z) = \frac{z^3 + 1}{z^2(z - e^{j\frac{2\pi}{3}})}.$$

Obviously, we have $y_1(n) = \delta(n) + \delta(n-3)$. The inverse \mathbb{Z} -transform of the other terms can be computed using, for example, contour integration. For computing $y_2(n)$, we have

$$y_2(n) = \frac{1}{2\pi j} \oint_C \frac{z^3 + 1}{z - e^{j\frac{\pi}{3}}} z^{n-3} dz,$$

where C is a counterclockwise closed contour in the region of convergence |z| > 1. For n > 2, we have only one pole inside C, so that

$$y_2(n) = \operatorname{Res}_{z=e^{j\frac{\pi}{3}}} Y_2(z) z^{n-1}$$

$$= \lim_{z \to e^{j\frac{\pi}{3}}} (z - e^{j\frac{\pi}{3}}) Y_2(z) z^{n-1}$$

$$= \lim_{z \to e^{j\frac{\pi}{3}}} (z^3 + 1) z^{n-3}$$

$$= (e^{j\pi} + 1) e^{j\frac{\pi}{3}(n-3)} = 0.$$

For n=2 we have an additional pole at z=0 so that

$$y_2(2) = \mathop{\rm Res}_{z=e^{j\frac{\pi}{3}}} Y_2(z)z + \mathop{\rm Res}_{z=0} Y_2(z)z$$

$$= \lim_{z \to e^{j\frac{\pi}{3}}} \frac{z^3 + 1}{z} + \lim_{z \to 0} \frac{z^3 + 1}{z - e^{j\frac{\pi}{3}}}$$

$$= 0 + \frac{1}{-e^{j\frac{\pi}{3}}} = -\frac{1}{2} + j\frac{1}{2}\sqrt{3}.$$

For n = 1 we have a double pole at the origin so that

$$y_2(1) = \underset{z=e^{j\frac{\pi}{3}}}{\text{Res}} Y_2(z) + \underset{z=0}{\text{Res}} Y_2(z)$$

$$= \lim_{z \to e^{j\frac{\pi}{3}}} \frac{z^3 + 1}{z^2} + \lim_{z \to 0} \frac{d}{dz} \left(\frac{z^3 + 1}{z - e^{j\frac{\pi}{3}}} \right)$$

$$= 0 + \lim_{z \to 0} \frac{3z^2(z - e^{j\frac{\pi}{3}}) - (z^3 + 1)}{(z - e^{j\frac{\pi}{3}})^2}$$

$$= \frac{-1}{e^{j\frac{2\pi}{3}}} = \frac{1}{2} + j\frac{1}{2}\sqrt{3}.$$

The value $y_2(0)$ is easily found by

$$y_2(0) = \lim_{z \to \infty} Y_2(z) = 1.$$

Note that by inspection of the difference equation of the system (y(n) = x(n) + x(n-3)), we can conclude that for n < 3, the output is simply x(n) (x(n-3) = 0 for n < 3 since x(n) is causal). Only after n = 3, the second term (x(n-3)) starts playing a role, thereby creating the zero in the frequency response for the input $x_2(n)$ and a gain of 2 for the input $x_3(n)$. So, we conclude that $y_2(n) = 0$ for n < 0, $y_2(n) = x_2(n)$ for n = 0, 1, 2 and $y_2(n) = 0$ (= $y_{1,ss}(n)$) for n > 2. Similarly, we find for $y_3(n)$ that $y_3(n) = 0$ for n < 0, $y_3(n) = x_3(n)$ for n = 0, 1, 2 and $y_3(n) = 2e^{j\frac{2\pi}{3}n}$ (= $y_{2,ss}(n)$) for n > 2.