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Assignment 1:

a)

H(z) = c
(z − a)(z + a)

(z − aj)(z + aj)
= c

z2 − a2

z2 + a2
, c ∈ R.

The system is unique up to a constant.

b) RegionR1 specifies the exterior of a circle so thath(n) is causal. Causal
LTI systems are BIBO stable if and only if all poles lieinside the unit circle.
Since|a| < 1, we conclude that the system is BIBO stable. When the region
of convergence isR2, the interior of a circle,h(n) is anticausal and we
conclude that the system is BIBO stable when all poles lieoutside the unit
circle. Hence, in this case the system is unstable.

c) ROC|z| > a. Hence, we have a causal solution. Assumec = 1. In that case
we have

h(n) =
1

2πj

∮

Ĉ
H(z)zn−1dz =

1

2πj

∮

Ĉ

(z2 − a2)zn−1

z2 + a2
dz,

whereC is a counterclockwise closed contour in the region of convergence
|z| > a. Forn ≥ 1, we have two poles insideC, so that

h(n) = Res
z=aj

H(z)zn−1 + Res
z=−aj

H(z)zn−1

= lim
z→aj

(z − aj)H(z)zn−1 + lim
z→−aj

(z + aj)H(z)zn−1

= lim
z→aj

(z2 − a2)zn−1

z + aj
+ lim

z→−aj

(z2 − a2)zn−1

z − aj

= (aj)n + (−aj)n = anej π
2
n + ane−j π

2
n = 2an cos(

π

2
n).

Forn = 0, we have poles atz = 0, z = aj andz = −aj so that

h(0) = Res
z=0

H(z)z−1 + Res
z=aj

H(z)z−1 + Res
z=−aj

H(z)z−1

= lim
z→0

z2 − a2

z2 + a2
+ lim

z→aj

z2 − a2

z(z + aj)
+ lim

z→−aj

z2 − a2

z(z − aj)

= −1 + 1 + 1 = 1.
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Note that the result forn = 0 can be found more easily using the initial
value theorem for causal sequences, that is,

h(0) = lim
z→∞

H(z) = 1.

d) ROC|z| < a. Hence, we have an anticausal solution. Assumec = 1 and let
p = z−1. In that case we have

h(n) =
1

2πj

∮

Ĉ′

H(p)p−n−1dp =
−1

2πj

∮

Ĉ′

(p2 − a−2)p−n−1

p2 + a−2
dp,

whereC ′ is a counterclockwise closed contour in the region of convergence
|p| > a−1. Forn ≤ −1, we have two poles insideC, so that

h(n) = Res
p=a−1j

H(p)p−n−1 + Res
p=−a−1j

H(p)p−n−1

= lim
p→a−1j

(p− a−1j)H(p)p−n−1 + lim
p→−a−1j

(p + a−1j)H(p)p−n−1

= lim
p→a−1j

−
(p2 − a−2)p−n−1

p + a−1j
− lim

p→−a−1j

(p2 − a−2)p−n−1

p− a−1j

= −
(

a−1j
)−n
−

(

−a−1j
)−n

= −ane−j π
2
n − anej π

2
n = −2an cos(

π

2
n).

This result could be obtained directly from c) since

h(n) =
−1

2πj

∮

Ĉ′

(p2 − a−2)p−n−1

p2 + a−2
dp,

is exactly the same expression as we found in c) except for a minus sign and
we have to replacea by a−1 andn by−n. Hence we have

h(n) = −2(a−1)(−n) cos(
π

2
(−n)) = −2an cos(

π

2
n).

Similarly, for n = 0 we then haveh(0) = −1. This result could also be
obtained from the initial value theorem for anticausal sequences

h(0) = lim
z→0

H(z) = −1,

or via contour integration where forn = 0, H(p) has three poles atp =
0, p = a−1j andp = −a−1j.
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Alternative solution: Partial-fraction expansion

H(z)

z
=

z2 − a2

z(z2 + a2)
=

A

z − aj
+

A∗

z + aj
+

B

z
.

The constantsA andB are found by

A = lim
z→aj

(z − aj)
H(z)

z
= lim

z→aj

z2 − a2

z(z + aj)
= 1,

B = lim
z→0

z
H(z)

z
= lim

z→0

z2 − a2

z2 + a2
= −1,

and we conclude that

H(z) =
z

z − aj
+

z

z + aj
− 1.

c) ROC|z| > a. By table lookup (see Table 3.3, p. 170) we find that

αnu(n)
Z
←→

1

1− αz−1
=

z

z − α
, |z| > α,

so that

h(n) = ((aj)n + (−aj)n)u(n)− δ(n)

=
(

anej π
2
n + ane−j π

2
n
)

u(n)− δ(n)

= 2an cos(
π

2
n)u(n)− δ(n).

d) ROC|z| < a. By table lookup we find that

−αnu(−n− 1)
Z
←→

1

1− αz−1
=

z

z − α
, |z| < α,

so that

h(n) = (− (aj)n − (−aj)n) u(−n− 1)− δ(n)

= −2an cos(
π

2
n)u(−n− 1)− δ(n).
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Assignment 2:

a)

Xa(f) =

∫

∞

0

αte−j2πftdt, α < 1.

Sinceαt = eln(αt) = et ln α we have

Xa(f) =

∫

∞

0

e−(j2πf−ln α)tdt

=
−1

j2πf − ln α
e−(j2πf−ln α)t

∣

∣

∞

0

=
1

j2πf − ln α
.

b)

0
f (Hz)

|Xa(f)|

−1
lnα

Figure 1: Magnitude spectrum ofXa(f).

c)

x(n) = xa(nTs) = αnTs =
(

αTs
)n

,

so thatβ = αTs.
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d)

X(f ′) =
1

1− βe−j2πf ′
=

1

1− αTse−j2πf ′

=
1

1− e−(j2πf ′−Ts lnα)
.

In terms of the frequencyf = f ′fs, this becomes

X(f) =
1

1− e
−

j2πf−ln α

fs

.

e)

1
1−αTs

f (Hz)f (Hz)
0 2fsfs−fs

|X(f)|

Figure 2: Magnitude spectrum ofX(f).

Note that whenfs ≫ 1, and thusTs ≪ 1, we can accurately approximate
the termαTs by its first-order Taylor series expansion given by

αTs ≈ 1 + Ts ln α,

so that

X(0) =
1

1− αTs
≈

1

1− (1 + Ts lnα)
=
−fs

ln α
= fsXa(0),

as expected.

f) SinceXa(f) is not bandlimited, we cannot recoverxa(t) out of its samples
x(n).

g) Sincexa(t) has infinite support,xa(t) cannot be recoverd from its peri-
odic extension so that it isnot possible to recoverX(f) out of its samples
X(2π

N
k).
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Assignment 3:

a)

H(z) =
z − 1

z − a
=

1− z−1

1− az−1
=

b0 + b1z
−1

1 + a1z−1
.

Hence,b0 = 1, b1 = −1 anda1 = −a.

b) We have a zero atz = 1 and a pole atz = a.

a
re(z)

im(z)

1

Figure 3: Pole-zero map ofH(z).

c) Since the system is causal, the system is BIBO stable if andonly if the pole
z = a lies inside the unit circle. Hence,|a| < 1.

d) Since the system has a zeros atz = 1, the magnitude response will be zero
atω = 0. It reaches a maximum at frequencyω = π of

|ejπ − 1|

|ejπ − a|
=
| − 1− 1|

| − 1− a|
=

2

1 + a
.

Note that in casea ≈ 1, we have

|H(ω)| =
|ejω − 1|

|ejω − a|
≈ 1,

for ω not too close to zero. The phase response is given by

∠H(ω) = ∠(ejω − 1)− ∠(ejω − a).
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2
1+a

3π
2

π
2 π 2π

ω

|H(ω)|

0

Figure 4: Magnitude response ofH(ω).

We have atω = 0+ that

∠H(0+) =
π

2
− 0 =

π

2
,

and atω = 0−

∠H(0−) = −
π

2
− 0 = −

π

2
.

At ω = π we have

∠H(0) = π − π = 0.

Note that in casea ≈ 1, we have

∠H(ω) = ∠(ejω − 1)− ∠(ejω − a) ≈ 0,

for ω not too close to zero.

−π
2

π
2 π 3π

2 2π
ω

∠H(ω)

π
2

0

Figure 5: Magnitude response ofH(ω).
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e) The impulse impulse is obtained by inverseZ-transformation. This can be
done, for example, using contour integration:

h(n) =
1

2πj

∮

Ĉ
H(z)zn−1dz =

1

2πj

∮

Ĉ

(z − 1)zn−1

z − a
dz,

whereC is a counterclockwise closed contour in the region of convergence
|z| > a. Forn ≥ 1 we have one pole atz = a so that

h(n) = Res
z=a

H(z)zn−1 = lim
z→a

(z − 1)zn−1 = (a− 1)an−1,

andh(0) is most easily found by the initial value theorem

h(0) = lim
z→∞

H(z) = 1.

Alternatively, we could have solved this problem using partial-fraction ex-
pansion. In that case we have

H(z)

z
=

z − 1

z(z − a)
=

A

z
+

B

z − a
,

where

A = lim
z→0

z
H(z)

z
= lim

z→0

z − 1

z − a
= a−1,

B = lim
z→a

(z − a)
H(z)

z
= lim

z→a

z − 1

z
= 1− a−1,

so that

H(z) = a−1 + (1− a−1)
z

z − a
.

The inverse transform is then obtained by table lookup (see Table 3.3, p.
170):

h(n) = a−1δ(n) + (1− a−1)anu(n).

f) We have

Y (z) = H(z)X(z),
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with (see Table 3.3, p. 170)

X(z) =
z

z − 1
.

The inverse transformation can be found by, for example, partial fraction
expansion:

Y (z)

z
=

z − 1

z − a
·

1

z − 1
=

1

z − a
,

and we conclude that

Y (z) =
z

z − a
, |z| > a

Z
←→ y(n) = anu(n).

Sincey(n) = ytr(n) + yss(n), with

yss = lim
n→∞

y(n) = 0,

we conclude thatytr(n) = anu(n). This is to be expected sincex(n) = u(n)
is a suddenly applied signal with frequencyω = 0 (DC component). Since
the system has a zero atz = 1, the magnitude response has a zero atω = 0,
and we conlcude that the steady-state responseyss(n) will be zero.

g) The zero-input responseyzi(n) in this case is zero since the system is ini-
tially in rest. Henceyzs(n) = y(n) = anu(n).
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