Answers to Example Exam in4049TU

Exercise 1

la. NUMA stands for cache coherent Non-Uniform Memory Architecture. This is an
architecture where the processors have local memories and local caches. The union
of local memories is behaving like a shared memory, but the access time to this
shared memory is dependent on whether the data is in the local memory of the
processor accessing the data or in a remote memory. The local caches in the system
are kept in a coherent state, i.e. a write operation on a data element in the cache of
one processor is also done on possible copies of this data element in other caches.

1.b The following levels of parallelism can be distinguished:

- bit-level parallelism, e.g. all bits in a data word can be operated on
simultaneously

- instruction level parallelism; a number of instructions are executed
simultaneously

- multiple functional units; a number of functional units can operate in parallel

- multiple processors

Ic. An SIMD processor consists of a large number of “small” processors and a control
processor. The control processor generates the instruction stream. Each processor
executes the instruction coming from the control processor. Processors can be
selectively switched off for certain instructions as to facilitate conditional execution.

1d. The following three interconnection topologies can be mentioned:

- Mesh. advantage: regular interconnection structure with a constant number of
links per processor. Disadvantage: relatively large diameter O(n).

- Hypercube. advantage: small diameter O(log n). Disadvantage: number of
links per processor grows if dimensionality of the hypercube increases. Not so
regular interconnection structure in 2D or 3D.

- Tree. Advantage: constant number of links per processor. Small diameter
O(log n). Disadvantage: low bandwidth in higher layers of the tree.

Exercise 2

2a. The following phases have to be passed:
- Decomposition in tasks
- Assignment of tasks to processes or threads
- Addition of communication and synchronization points (orchestration)
- Assignment of processes to processors (mapping)

2b. A barrier is a synchronization operation that forces processors to wait at a certain
point in the code execution until all processors have reached the same point.



2c. This is caused by the overhead in setting up communication between two programs.
Usually, the OS must allocate buffer space and the communication path has to be set
up. This overhead is usually a constant factor that is virtually independent of the
number of bits that has to be sent across.

2d. This must be done through a shared variable that can be locked. This shared variable
can represent a TRUE or FALSE situation. Each operation on this shared variable
must be atomic, i.e. only one processor at a time can change the value.

Exercise 3

3a. With the Jacobi process, the new approximation of the result x on the k-th iteration, x,,
only depends on the vector x, ;. The calculations within an iteration are therefore fully
parallel. With the Gauss-Seidel process, x, depends both on x, and x, ;. Therefore, the
calculations within an iteration are mutually dependent. A way to obtain some
parallelization is the application of red-black ordering. With red-black ordering the
calculations within an iteration are split in two sub-iteration spaces. The calculations
within each sub-iteration space can then be done in parallel.

3b. The Jacobi, Red-Black SOR end the CG methods are parallelized by using the
domain decomposition method. The numerical grid is partitioned in p parts and each
processor is assigned a part of the grid. The calculations on all parts of the grid are
then to be done in parallel by the p processors, with an exchange of the border values
after each time step.

3c. Suppose the 2-D grid is partitioned in \/; X \/; blocks. Then each block has
((n/ \/E x(n/ \/B ) grid points. The maximum number of grid points on the edges of

a block (with 4 neighbors) is 4(n/ \/; —1). The computation time of a block is
linearly dependent on the number of grid points in a block, 7., =(n/p)-t,-c,
where 7, is the time it takes for a floating-point operation and ¢ is a constant. There

are maximally 4 communications of length (n/ \/; -1). Hence, the communication
timeis 7. =4(a+((n/ \/;) -1B), where a and P are the startup time and the

comm

speed of the communication channel. The ratio is the given by

2

T, nctyc
L =0(n/
T, daranp-ng " P

3d. The two parallel FFT algorithms have the same parallel time complexity. The
difference is in the data distribution and the computation and communication phases.
With a block distribution a group of (m/p) joint data is assigned to the same
processor. With a cyclic distribution the data is assigned one after the other to the
next processor. Furthermore, with the block distribution algorithm communication
only takes place in the first log(p) steps and there is no communication in the
remaining log(m/p) steps. With the cyclic distribution algorithm there is no
communication in the first log(m/p) steps and all communication takes place in the




last log(p) steps.



Exercise 4

4a. We want a balanced distribution of the workload to the processors with a minimum of
communication. The first objective asks for a partitioning of the graph in a number of
subgraphs that are equal in size. The second objective asks for a minimum number of
connections between the subgraphs.

4b. No. The recursive spectral method usually gives a more optimal partitioning of a
graph, but often costs much more computation time than the Kernighan-Lin algoritm. The
choice is dependent on the type of applications.

4c. The most time consuming part are the calculations of the forces that the particles have
on each other. The calculation time of these forces is O(N*) on a system with N particles.

4d. No. The calculations of the forces in the Barnes-Hut algorithm are reduced to
O(Nlog(N)). The other steps, such as the building of the quadtree or the octtree also have
a time complexity of O(Nlog(N)). So in an efficient parallel implementation of the
Barnes-Hut algoritm also the other steps must be parallelized.



