Example Exam in 4046TU

Exercise 1

- (a) What is a ccNUMA architecture?
- (b) Give four (4) levels of parallelism in parallel computers.
- (c) What is an SIMD processor?
- (d) Give four (4) different interconnection topologies.

Exercise 2

- (a) Give the four (4) phases of mapping a program to a parallel machine. Explain the working of each phase.
- (b) What is the function of a barrier in a parallel program?
- (c) Why is sending long messages more efficient than short messages in a parallel system?
- (d) Given are two tasks T1 and T2 that have to be executed on a system with two processors, where each task is assigned to a different processor. The tasks T1 and T2 might have precedence constraints. How can we enforce the correct sequence of task execution in a Shared Memory system.

Exercise 3

- (a) Why do we have to parallelize the Gauss-Seidel iterative process differently than the Jacobi process?
- (b) What are the common characteristics of parallelizing the Jacobi, Red-Black SOR, and Conjugated Gradient (CG) methods for solving the Poisson equation?
- (c) Given is a two-dimensional grid of *n* by *n* points. Suppose that we want to parallelize the Jacobi method by using the domain decomposition method. What is the ratio between communication and computation time of this parallel program?
- (d) Give the most important differences between a parallel FFT algorithm with a block distribution and a parallel FFT algorithm with a cyclic distribution.

Exercise 4

- (a) What is it that we want to optimize with graph partitioning?
- (b) Is the recursive spectral bisection method always to be preferred over the Kernighan-Lin algorithm?
- (c) Which computations are the most time consuming in the numerical simulation of an N-body system using the particle-particle method?
- (d) Suppose that we efficiently parallelize the computations of the forces on the particles. Is this sufficient for an efficient implementation of the Barnes-Hut algorithm?