2628 CD Delft

Exam Measure and Integration Theory (wi4320) April 11, 2013, 14.00-17.00

Grading: $\frac{1}{10}((20) + (10 + 10) + (10 + 10 + 5) + (5 + 5 + 5 + 5 + 5) + (10 \text{ free}))$ Motivate your solutions!

1. Let (X, \mathcal{M}, μ) be a measure space and let $1 \leq p_0 \leq p_1 \leq \infty$. For $0 < \theta < 1$ define the number $1 \leq p \leq \infty$ by the relation

$$\frac{1}{p_{\theta}} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}.$$

Prove that if $f \in L^{p_0}(X,\mu) \cap L^{p_1}(X,\mu)$, then $f \in L^{p_{\theta}}(X,\mu)$ and

$$||f||_{p_{\theta}} \le ||f||_{p_0}^{1-\theta} ||f||_{p_1}^{\theta}.$$

Hint: Apply Hölder's inequality.

- 2. The Dirac measure δ_0 on \mathbb{R} is the Borel measure defined by $\delta(B) = 1$ if $0 \in B$ and $\delta(B) = 0$ if $0 \notin B$.
 - (a) Show that every Borel function $f: \mathbb{R} \to \mathbb{R}$ is integrable with respect to δ_0 and

$$\int_{\mathbb{R}} f \, d\delta_0 = f(0).$$

Hint: Show first that $f = \mathbf{1}_{\{0\}} \delta_0$ -almost everywhere.

- (b) Show that δ_0 is singular with respect to the Lebesgue measure of \mathbb{R} .
- 3. A Borel probability measure μ on $\mathbb R$ is called *regular* if for all Borel subsets B of $\mathbb R$ and all $\varepsilon > 0$ there is a closed set F in $\mathbb R$ and an open set G in $\mathbb R$ such that $F \subseteq B \subseteq G$ and $\mu(G \setminus F) < \varepsilon$.

Show that every Borel probability measure μ on $\mathbb R$ is regular by completing the following steps:

(a) Show that the collection of all Borel sets B in \mathbb{R} which have the property that for all $\varepsilon > 0$ there exist a closed set F in \mathbb{R} and an open set G in \mathbb{R} such that $F \subseteq B \subseteq G$ and $\mu(G \setminus F) < \varepsilon$ is a σ -algebra.

PLEASE TURN THE PAGE

(b) Show that this collection contains all closed sets F in \mathbb{R} . Hint: If F is a closed set, consider the open sets

$$G_n = \{x \in \mathbb{R} : \inf\{|x - y| : y \in F\} < 1/n\}$$

and show that $\mu(G_n \setminus F) \to 0$ as $n \to \infty$.

- (c) Derive the asserted result from (a) and (b).
- 4. In this exercise we work over the real scalar field; all functions are assumed to be real-valued. Let (X, \mathcal{M}, μ) be a finite measure space. We are going to prove that the dual of $L^1(X, \mu)$ is $L^{\infty}(X, \mu)$.
 - (a) Show that for every $f \in L^{\infty}(X, \mu)$ the mapping $\phi_f : L^1(X, \mu) \to \mathbb{R}$, defined by

$$\phi_f(g) := \int_X fg \, d\mu, \qquad g \in L^1(X, \mu),$$

is bounded.

Suppose, conversely, that $\phi: L^1(X,\mu) \to \mathbb{R}$ is a bounded linear functional.

- (b) Show that $\nu(B) := \phi(\mathbf{1}_B)$, $B \in \mathcal{M}$, defines a real-valued measure ν on (X, \mathcal{M}) .
- (c) Show that ν is absolutely continuous with respect to μ .

Let f be the Radon-Nikodým derivative of ν with respect to μ .

(d) Show that $f \in L^{\infty}(X, \mu)$.

Hint: Show that if $f \notin L^{\infty}(X, \mu)$, then for each $n \ge 1$ there exists a set $M \in \mathcal{M}$ such that $|\phi(\mathbf{1}_M)| \ge n ||\mathbf{1}_M||_1$.

(e) Show that $\phi = \phi_f$, where ϕ_f is the bounded linear functional associated with f defined in part (a).

THE END