2628 CD Delft

Exam Measure and Integration theory January 22, 2013; 14.00 - 17.00

All solutions should be carefully motivated. Grading: $\frac{1}{10} \times [(5+10+10+5+5)+(5+15)+(10+10+15)+(10 \text{ free})]$

In Problems 1 and 2, (X, \mathcal{M}, μ) is an arbitrary measure space.

- 1. Suppose a nonnegative function $f \in L^1(\mu)$ is given.
 - (a) Show that $\nu(A) := \int_A f \, d\mu$ defines a measure on (X, \mathcal{M}) .
 - (b) Show that a measurable function g belongs to $L^1(\nu)$ if and only if $fg \in L^1(\mu)$, and that in that case the following identity holds:

$$\int_X g \, d\nu = \int_X f g \, d\mu.$$

(c) Show that ν is absolutely continuous with respect to μ . Does ν have a density (Radon-Nikodym derivative) with respect to μ ? If yes, determine it; if no, prove this.

Suppose now that $f \in L^1(\mu)$ is an arbitrary function.

- (d) Show that $\nu(A) := \int_A f \, d\mu$ defines a real-valued measure on (X, \mathcal{M}) .
- (e) Determine its Hahn decomposition (its decomposition into positive and negative parts) and prove that your answer is indeed correct.
- 2. Let $1 \leq p < \infty$ and suppose a function $f \in L^p(\mu)$ is given.
 - (a) Show that the function $r \mapsto \mu(\{|f| > r\})$ is measurable.
 - (b) Show that

$$\int_X |f|^p \, d\mu = p \int_0^\infty r^{p-1} \mu(\{|f| > r\}) \, dr.$$

Hint: Write $\mu(\{|f| > r\})$ as an integral.

Do you see a way to generalise this identity?

-- please turn the page --

3. Let $f \in L^1_{loc}(\mathbb{R}^d)$ be given, and let

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy, \quad x \in \mathbb{R}^d,$$

be the associated Hardy-Littlewood maximal function. Here, $B_r(x) = \{y \in \mathbb{R}^d : |x-y| < r\}$ is the open ball of radius r centred at x, and $|B_r(x)|$ is its Lebesgue measure.

- (a) Show that Mf, as an extended real-valued function, is measurable.
- (b) Show that, for any function $f \in L^1(\mathbb{R}^d)$, we have $Mf \in L^1(\mathbb{R}^d)$ if and only if f = 0 in $L^1(\mathbb{R}^d)$.

Hint: By considering the balls $B_{|2x|}(x)$ with |x| sufficiently large, first establish that if $f \neq 0$, then there exists a constant C > 0 and an r > 0 such that $Mf(x) \geq C|x|^{-d}$ for all $|x| \geq r$.

- (c) What can be said about Mf if:
 - (i) $f \in L^1(\mathbb{R}^d)$;
 - (ii) $f \in L^p(\mathbb{R}^d)$ with 1 ;
 - (iii) $f \in L^{\infty}(\mathbb{R}^d)$.

State the relevant theorems and briefly indicate the main ingredients of the proofs; no proofs are required.

-- end of the exam --