Faculteit EWI, DIAM

2628 CD Delft

Exam Measure and Integration theory January 27, 2012; 14.00 - 17.00

All solutions should be carefully motivated. Grading: $(\frac{1}{2}+1+\frac{1}{2}+1)+2+2+2+(1 \text{ free})$

- 1. Let X be a non-empty set and let $\mathscr A$ be the collection of all subsets of X that are countable or have countable complement.
 - (a) Prove that \mathscr{A} is a σ -algebra.
 - (b) Prove that $\mathscr A$ is generated by the collection of all singletons $\{x\}$, $x \in X$.

Define $\tau: \mathscr{A} \to [0, \infty]$ by

 $\tau(A) = \left\{ \begin{array}{ll} n, & \text{if } A \text{ contains } n \text{ elements;} \\ \infty & \text{if } A \text{ contains infinitely many elements.} \end{array} \right.$

(c) Prove that τ is a measure on (X, \mathcal{A}) . When is this measure σ -finite?

Let $f: X \to \mathbb{R}$ be a function and let $A \subseteq X$ be a countable subset. Suppose that $f \equiv 0$ on the complement of A and that $\sum_{i=1}^{n} |f(a)| < \infty$.

(d) Prove that f is integrable with respect to τ and

$$\int_X f \, d\tau = \sum_{a \in A} f(a).$$

- 2. Prove that a function $f:[0,1] \to [0,1] \times [0,1]$ is Borel measurable if and only if the coordinate functions $\pi_1 \circ f:[0,1] \to [0,1]$ and $\pi_2 \circ f:[0,1] \to [0,1]$ are Borel measurable. Here, $\pi_1(x_1,x_2)=x_1$ and $\pi_2(x_1,x_2)=x_2$ are the coordinate projections.
- 3. Let $1 \leq p < q \leq \infty$. Show that if $f \in L^p(\mathbb{R}) \cap L^q(\mathbb{R})$, then for all p < r < q we have $f \in L^r(\mathbb{R})$.

Hint: Write $f = f1_{\{|f| \le 1\}} + f1_{\{|f| > 1\}}$.

- 4. Let (X, \mathscr{A}, μ) be a measure space and let $f: X \to \mathbb{R}$ be integrable. Show that for all $\varepsilon > 0$ there is a $\delta > 0$ such that $\int_A f \, d\mu < \varepsilon$ for all $A \in \mathscr{A}$ satisfying $\mu(A) < \delta$.
 - -- please turn the page --

5. (Bonus problem for 1 extra point). On $[0,1] \times [0,1]$ we consider the product σ -algebra $\mathscr{A} \otimes \mathscr{B}$, where \mathscr{A} is the countable/co-countable σ -algebra of Problem 1 and \mathscr{B} the Borel σ -algebra. Is the diagonal

$$\Delta = \{(x, x): \ x \in [0, 1]\}$$

measurable in this σ -algebra?

Hint: Intersect with $[0,1] \times [0,\frac{1}{2}]$ an consider the mapping $x \mapsto (x,x)$. Figure out yourself how to use this hint!

-- end of the exam --