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Questions

Please: Write clearly and try to be as complete as possible.
The di↵erent questions give di↵erent points. You can find the actual values in the brackets.
The total amount of points is 20.

1. Let A be the class of all the subsets of R, which are finite unions of disjoint semi-open intervals like
(a, b] and (c,+1). Enrich A by including the set ;. Show that A is closed under finite intersections.
(2 Points)

2. Let A be defined as in the text of the previous point. Consider all the intervals of type (a, b] and
(c,+1) in R. Let F : R ! [0, 1] be a proper repartition function. Then define the following
probabilities:

P0((a, b]) = F (b)� F (a) and P0((c,+1)) = 1� F (c),

and

P1(A) :=

nX

i=1

P0((ai, bi]),

for A 2 A.
Show that P1 is a probability on A. (3 Points)

3. Let us assume that, for every t1, ..., tn 2 T , n � 1, we have defined P

t1,...,tn on (Rn

,B(Rn)). Let
also assume that the following compatibility conditions hold:

a. P

t1,...,tn(A1 ⇥ ...⇥ A

n

) = P

ts1 ,...,tsn (A
s1 ⇥ ...⇥ A

sn), where (s1, ..., sn) is any permutation of
(1, ..., n), n � 1.

b. P

t1,...,tn(A⇥ R) = P

t1,...,tn�1(A), 8A 2 B(Rn�1).

Now let us define P on (RT

,B(RT )) such that

P (I
t1,...,tn(A)) = P

�
(x

t

)
t2T

2 RT : (x
t1 , ..., xtn) 2 A

�
:= P

t1,...,tn(A), A 2 B(Rn),

where I

t1,...,tn(A) is a cylinder of basis A.
Show that P is well-defined. (2 Points)
(Hint: Assume that I

ti1 ,...,tin
(A) = I

tj1 ,...,tjm
(B), with A 2 B(Rn) and B 2 B(Rm).)

4. Let {B(t,!)}
t�0 be a family of random variables, which are defined on a probability space (⌦,F , P ),

with values in R. When is the process B(t,!) a Brownian motion? (2 Points)



5. Let B(t,!) be a Brownian motion:

• Show that �B(t,!) is a Brownian motion as well. (1 Point)

• Show that also tB(1/t,!), for t > 0, is a Brownian motion. (1 Point)

In both cases you can skip the part of the proof related to the almost surely continuous trajectories.

6. Show that a Brownian motion is a martingale with respect to its natural filtration and the Wiener
measure P . (2 Points)

7. Let B(t,!) be a Brownian motion; show that the process {B2(t,!) � t}
t�0 is a martingale with

respect to the natural filtration of B(t,!) and the Wiener measure P . You can assume this new
process to be integrable and adapted. (1 Point)
(Hint: start by using the same trick we have used in class to prove the martingality of B(t,!). In
other terms, add and subtract something...)

8. Consider the simple process � 2 M2[0, T ]. Show that
R
T

0 c�(t,!)dB(t,!) = c

R
T

0 �(t,!)dB(t,!),
where c is a constant and B(t,!) is a Brownian motion. (1 Point)

9. Describe the procedure we can use to define the Itō’s integral of a general function f 2 M2[0, T ].
(3 Points)

10. Let a(t) and b(t) be two deterministic (i.e. non-random) functions. Now assume that the returns
of a given financial product are well approximated by the following stochastic di↵erential

dX(t,!) = a(t)dt+ b(t)dB(t,!).

Compute E[X(t,!)] and V ar[X(t,!)]. (2 Points)
(Note: There are at least 2 ways of solving this exercise. Both are correct.)

Answers

1. From what we have seen in class, we know that A is an algebra, hence it must be closed under finite
intersections. However, to prove this it is su�cient to consider two sets inA, namelyA =

S
n

i=1(ai, bi]
and B =

S
m

j=1(a
⇤
j

, b

⇤
j

]. Then

A \B =

 
n[

i=1

(a
i

, b

i

]

!
\

0

@
m[

j=1

(a⇤
j

, b

⇤
j

]

1

A =

n[

i=1

m[

j=1

(a
i

, b

i

] \ (a⇤
j

, b

⇤
j

].

Since all the intervals (a
i

, b

i

] and (a⇤
j

, b

⇤
j

] are disjoint, we have that the intersection (a
i

, b

i

]\ (a⇤
j

, b

⇤
j

]
is either empty or an interval of type (a, b], hence we easily derive A\B 2 A. This simple reasoning
can be extended to any finite intersection of elements of A.

2. First notice that this question does not ask you to prove that P1 is well-defined. Hence we can skip
that part.
To prove that P1 is a probability on A, we have to show the following points

a. P1(R) = 1;

b. 8A 2 A, P1(A) � 0;

c. For A1, A2, ....An

2 A pairwise-disjoint, the probability P1 is (finitely) additive, i.e.

P1 ([n

i=1Ai

) =

nX

i=1

P1(Ai

).

We know that F is a repartition function. In the lecture notes you can find all the properties on
page 4. Therefore, for point 1, just set R = (�1,+1). Then

P1((�1,+1)) = lim
c!�1

P1((c,+1)) = lim
c!�1

(1� F (c)) = 1.
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Point 2 is given by the fact that F is non-decreasing, and P1((ai, bi]) = F (b
i

)� F (a
i

) � 0.
Finally, for point 3, we know that, given two disjoint sets A =

S
n

i=1(ai, bi] and B =
S

m

j=1(a
⇤
j

, b

⇤
j

] in
A, A [B 2 A. In particular we can write

A [B =

 
n[

i=1

(a
i

, b

i

]

!
[

0

@
m[

j=1

(a⇤
j

, b

⇤
j

]

1

A =

n+m[

k=1

(c
k

, d

k

].

Hence

P1(A [B) =

n+mX

i=1

P0((ck, dk]) =

nX

i=1

P0((ai, bi]) +

mX

j=1

P0((a
⇤
j

, b

⇤
j

]) = P1(A) + P1(B).

3. Assume that I

ti1 ,...,tin
(A) = I

tj1 ,...,tjm
(B), with A 2 B(Rn) and B 2 B(Rm). W.l.o.g. we can

assume that both t

i1 , ..., tin and t

j1 , ..., tjm are subsets of t1, ..., tN . Hence, using the compatibility
conditions:

P

ti1 ,...,tin (A) = P

t1,...,tN
�
(x

t1 , ..., xtN ) : (x
ti1

, ..., x

tin
) 2 A

�

= P

t1,...,tN
�
(x

t1 , ..., xtN ) : (x
tj1

, ..., x

tjm
) 2 B

�
= P

tj1 ,...,tjm (B)

4. Here we simply have to give the definition of Brownian motion. In other words, B(t) is a Brownian
motion if

• For 0 = t0 < t1 < ... < t

n

< +1, the increments B(t1), B(t2)�B(t1), ...., B(t
n

)�B(t
n�1) are

independent random variables;

• Each increment B(t) � B(s), s < t, follows a normal distribution with mean 0 and variance
t� s, i.e. E[B(t)�B(s)] = 0 and V ar[B(t)�B(s)] = t� s;

• The trajectories t ! B(t) are continuous almost surely, that is to say with unitary probability.

5. There are di↵erent possibilities to prove these two points. For example we can use the fact that the
increments are normally distributed and play with that. We can simply notice that E[B(t)] = 0
for t � 0, and Cov[B(t), B(s)] = Cov[B(s) + (B(t)�B(s)), B(s)] = Cov[B(s), B(s)] + Cov[B(t)�
B(s), B(s)] = V ar(B(s)) = s, for 0  s < t. Hence

• For t � 0, E[�B(t)] = �E[B(t)] = 0, and for 0  s < t, Cov[�B(t),�B(s)] = Cov[B(t), B(s)] =
s;

• First notice that 1/t is nothing more than a time rescaling.
For t � 0, E[tB(1/t)] = tE[B(1/t)] = 0, and for 0  s < t, Cov[tB(1/t), sB(1/s)] =
stCov[B(1/t), B(1/s)] = st

1
t

= s;

The fact that B(t) is a Gaussian process does the rest.

6. The answer to this point is Proposition 7 on page 25 in the lecture notes. In particular it is nice
to remember the trick of writing B(t) = B(t) + B(s)� B(s) with s  t, since we can use it in the
next point.

7. Since we do not have to prove adaptivity and integrability, we can simply prove the actual martingale
part, i.e.

E[B2(t)� t|F
s

] = B

2(s)� s, 0  s  t.

The starting point is always the same trick of adding and subtracting B(s), that is

B

2(t)� t = (B(s) + (B(t)�B(s)))2 � t = B

2(s) + (B(t)�B(s))2 + 2B(s)(B(t)�B(s))� t.

At this point, let us notice that

E[B2(s)|F
s

] = B

2(s),

E[2B(s)(B(t)�B(s))|F
s

] = 2B(s)E[(B(t)�B(s))|F
s

] = 2B(s)E[(B(t)�B(s))] = 0,

E[(B(t)�B(s))2|F
s

] = E[(B(t)�B(s))2] = t� s.

Hence
E[B2(t)� t|F

s

] = B

2(s) + 0 + t� s� t = B

2(s)� s.
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8. We simply use the definition of Itō’s integral for a simple process, i.e.

Z
T

0
�(t,!)dB(t,!) :=

n�1X

j=0

a

j

(!) [B(t
j+1,!)�B(t

j

,!)] .

Hence

Z
T

0
c�(t,!)dB(t,!) =

n�1X

j=0

ca

j

(!) [B(t
j+1,!)�B(t

j

,!)]

= c

n�1X

j=0

a

j

(!) [B(t
j+1,!)�B(t

j

,!)] = c

Z
T

0
�(t,!)dB(t,!).

9. In order to define the Itō’s integral for f 2 M2[0, T ] we schematically follow the steps below:

• We introduce the concept of simple process � and we define the corresponding Itō’s integral,
in a way which recalls standard calculus (here we have random rectangles, but the idea is more
or less the same);

• We introduce the concept of approximating sequence for a function f 2 M2;

• We show that every continuous and bounded function g 2 M2 can be approximated by a
proper sequence of simple processes {�

n

};
• We then show that every bounded function h 2 M2 can be approximated by a proper sequence
of continuous and bounded functions {g

n

};
• Hence we show that every function f 2 M2 can be approximated by a proper sequence of
bounded functions {h

n

}, that is to say by a proper sequence of simple processes {�
n

}, which
we can find both in g and h;

• Finally we define
R
T

0 f(t,!)dB(t,!) as the limit of
R
T

0 �

n

(t,!)dB(t,!), for �
n

! f as n ! 1.

Naturally, we could improve this short answer by adding details, proofs, etc. Here we just give the
basic ingredients of a correct answer, meaning that all these elements must be cited.

10. We know that
dX(t,!) = a(t)dt+ b(t)dB(t,!).

This means that

X(t,!) = X(0) +

Z
t

0
a(s)ds+

Z
t

0
b(s)dB(s,!).

Clearly

E[X(t,!)] = X(0) +

Z
t

0
a(s)ds,

since we know that E[
R
t

0 b(s)dB(s,!)] = 0.
For what concerns the variance, on the contrary,

V ar[X(t,!)] = E

"✓Z
t

0
b(s)dB(s,!)

◆2
#
= E

Z
t

0
b

2(s)ds

�
=

Z
t

0
b

2(s)ds.

The result about the variance can also be obtained using Itō’s formula, by setting g(t, x) = x

2,
g

0
t

= 0, g0
x

= 2x and g

00
xx

= 2. The formula allows us to compute X

2(t,!), hence E[X2(t,!)]. This
last quantity can be used in the variance decomposition to compute the variance, once we know the
expected value E[X(t,!)]. In fact we know that V ar[X] = E[X2]� (E[X])2.
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