Exam 2009-2010

1. Consider the Vasicek interest rate model

$$dR(t) = (\alpha - \beta R(t)) dt + \sigma dW(t),$$

where $\{W(t); t \geq 0\}$ is Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and α, β and σ are positive constants. Find a probability measure \mathbb{Q} such that $e^{\beta t}R(t)$ is a \mathbb{Q} -martingale.

Solution:

$$d e^{\beta t} R(t) = \beta e^{\beta t} R(t) dt + e^{\beta t} dR(t)$$
$$= \sigma e^{\beta t} \left[\frac{\alpha}{\sigma} dt + dW(t) \right]$$
$$= \sigma e^{\beta t} d\widetilde{W}(t)$$

where

$$\widetilde{W}(t) = W(t) + \frac{\alpha}{\sigma}t.$$

Define

$$\mathbb{Q}(A) = \int_{A} \exp\left[-\frac{\alpha}{\sigma}W(T) - \frac{1}{2}\left(\frac{\alpha}{\sigma}\right)^{2}T\right] d\mathbb{P}, \quad A \in \mathcal{F}_{T}.$$

By Girsanov's Theorem, $\{\widetilde{W}(t), t \in [0, T]\}$ is a Brownian motion with respect to \mathbb{Q} . Since

$$\mathbb{E}_{\mathbb{Q}} \int_{0}^{T} \left(\sigma e^{\beta t} \right)^{2} dt = \frac{\sigma^{2}}{2\beta} \left(e^{2\beta T} - 1 \right) < \infty,$$

it follows from the properties of the stochastic integral that $\{e^{\beta t}R(t); t \in [0,T]\}$ is a \mathbb{Q} -martingale.

2. Consider the Black-Scholes model for the asset price

$$dS(t) = \alpha S(t) dt + \sigma S(t) dW(t)$$

where $\{W(t); t \geq 0\}$ is Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and α and σ are positive constants. The interest rate of the bank account is a constant r > 0.

(a) Give the definition of the risk-neutral probability $\widetilde{\mathbb{P}}$ and its Radon-Nikodým derivative with respect to \mathbb{P} .

Solution: A probability measure $\widetilde{\mathbb{P}}$ is said to be risk-neutral if

- i. $\widetilde{\mathbb{P}} \equiv \mathbb{P}$,
- ii. discounted stock price $e^{-rt}S(t)$ is a martingale.

A random variable Z is the Radon-Nikodým derivative of $\widetilde{\mathbb{P}}$ with respect to \mathbb{P} if for all $A\in\mathcal{F}$

$$\widetilde{\mathbb{P}}(A) = \int_A Z \, \mathrm{d}\mathbb{P}.$$

(b) Derive the risk-neutral pricing formula.

Solution: The differential of the discounted stock price is given by

$$de^{-rt}S(t) = -re^{-rt}S(t) dt + e^{-rt} dS(t)$$
$$= \sigma e^{-rt}S(t) \left[\frac{\alpha - r}{\sigma} dt + dW(t)\right].$$

Define $Z = \exp\left(-\theta W(T) - \frac{1}{2}\theta^2 T\right)$ where $\theta = (\alpha - r)/\sigma$ is the market price of risk, and

$$\widetilde{\mathbb{P}}(A) = \int_A Z \, d\mathbb{P}, \quad A \in \mathcal{F}(T).$$

So with $\widetilde{W}(t) = W(t) + \theta t$

$$de^{-rt}S(t) = \sigma e^{-rt}S(t) d\widetilde{W}(t)$$

and by Girsanov's theorem the discounted stock price is a martingale under $\widetilde{\mathbb{P}}$. Consider an agent who is short in a derivative security that pays V(T) at time T. Suppose that he begins with initial capital X(0) and at each time t, $0 \le t \le T$, holds $\Delta(t)$ shares of stock, investing or borrowing at the interest rate r as necessary to finance this. The differential of the agent's portfolio value X(t) is

$$dX(t) = \Delta(t) dS(t) + r(X(t) - \Delta(t)S(t)) dt$$

and it follows that the differential of the discounted portfolio value is given by

$$de^{-rt}X(t) = \Delta(t)\sigma e^{-rt}S(t) d\widetilde{W}(t).$$

So, the discounted portfolio value is a martingale. For a hedge of the derivative security we need X(T) = V(T). The existence of a hedge follows from the martingale representation theorem. The value of the hedging portfolio is then defined as the price V(t) of the derivative. The risk-neutral pricing formula is then

$$V(t) = X(t) = e^{rt} \cdot e^{-rt} X(t) = \widetilde{\mathbb{E}} \left[e^{-r(T-t)} V(T) \mid \mathcal{F}(t) \right].$$

3. Consider a European call and a European put option both with strike K and exercise time T. Let C(t) and P(t) be the values at time $t \leq T$ of the call and the put respectively. Consider two portfolios:

 π_A : call option plus $Ke^{-r(T-t)}$ cash invested in a bank with constant interest rate r,

 π_B : put option plus one unit of the asset with price process $\{S(t)\}$.

Derive the put-call parity

$$C(t) + Ke^{-r(T-t)} = P(t) + S(t).$$

Solution: The portfolios π_A and π_B have the same exercise value. By no-arbitrage the values at the times t, $0 \le t \le T$ are the same as well.

4. Let the stock price be modeled as a geometric Brownian motion

$$dS(t) = \alpha S(t) dt + \sigma S(t) dW(t), \quad 0 \le t \le T,$$

and let r denote the interest rate. The value at time t of a call option with strike K and expiry T is denoted by C(t), and the value of a put option with the same strike and expiry is denoted by P(t). Now consider a date t_0 between 0 and T, and consider a *chooser option*, which gives the right at time t_0 to choose to own either the call or the put.

(a) Show that at time t_0 the value of the chooser option is

$$C(t_0) + \left(e^{-r(T-t_0)}K - S(t_0)\right)^+$$
.

Solution: the value at time t_0 is

$$\max(C(t_0), P(t_0)) = C(t_0) + \max(0, P(t_0) - C(t_0))$$

By the put-call parity we can write

$$\max(C(t_0), P(t_0)) = C(t_0) + \max(0, Ke^{-r(T-t_0)} - S(t_0))$$
$$= C(t_0) + \left(e^{-r(T-t_0)}K - S(t_0)\right)^+.$$

(b) Show that the value of the chooser option at time 0 is the sum of the value of a call expiring at time T with strike price K and the value of a put expiring at time t_0 with strike price $e^{-r(T-t_0)}K$.

Solution: The discounted value is a martingale with respect to the risk-neutral measure, so the value at time 0 is

$$\widetilde{\mathbb{E}}\left[e^{-rt_0}\left(C(t_0) + \left(e^{-r(T-t_0)}K - S(t_0)\right)^+\right)\right]$$

$$= C(0) + \widetilde{\mathbb{E}}\left[e^{-rt_0}\left(e^{-r(T-t_0)}K - S(t_0)\right)^+\right]$$

which is the sum of the value of a call expiring at time T with strike price K and the value of a put expiring at time t_0 with strike price $e^{-r(T-t_0)}K$.

5. The price of a stock is modeled as a geometric Brownian motion

$$dS(t) = \alpha S(t) dt + \sigma S(t) dW(t), \quad S_0 = 5,$$

where $\alpha = 0.1$ and $\sigma = 0.2$. Consider a derivative with payoff

$$V(T) = S(T) - S(T/2)$$

at time T=4. The interest rate of the bank account is r=0.02.

(a) Calculate the probability that the payoff of the derivative is > 0. **Solution**:

$$S(T) = S(T/2) \exp \left\{ \sigma(W(T) - W(T/2)) + (\alpha - \frac{1}{2}\sigma^2)T/2 \right\}$$

= $S(T/2) \exp \left\{ 0.2(W(4) - W(2)) + 0.16 \right\}$

so

$$\{V(T) > 0\} = \{0.2(W(4) - W(2)) + 0.16 > 0\}$$

and
$$\mathbb{P}(V(T) > 0) = \mathbb{P}(U > -0.5657)$$
, where $U \sim N(0, 1)$.

(b) Show that the value of the derivative at time T/2 is given by

$$V(T/2) = (1 - e^{-rT/2}) S(T/2).$$

Solution:

$$e^{-rT/2}V(T/2) = \widetilde{\mathbb{E}}\left[e^{-rT}V(T) \mid \mathcal{F}(T/2)\right]$$
$$= \widetilde{\mathbb{E}}\left[e^{-rT}S(T) \mid \mathcal{F}(T/2)\right] - e^{-T}S(T/2)$$
$$= (e^{-rT/2} - e^{-T})S(T/2)$$

and it follows that

$$V(T/2) = (1 - e^{-rT/2}) S(T/2).$$

(c) Find a hedge for a payoff V(T/2) at time T/2.

Solution:

Set up a static hedge. Buy at time 0 ($e^{rT/2} - 1$) shares of the stock. The capital needed for buying the stock is equal to the price of the derivative.

(d) Find a hedge for the derivative with payoff V(T) at time T. Solution: We follow the argument in Shreve Section 5.3.2.

$$V(0) = \widetilde{\mathbb{E}} \left[e^{-rT} (S(T) - S(T/2)) \right] = \left(1 - e^{-rT/2} \right) S(0).$$

We have

$$e^{-rt}V(t) = \widetilde{\mathbb{E}} \left[e^{-rT} (S(T) - S(T/2)) \mid \mathcal{F}_t \right]$$

$$= \begin{cases} (1 - e^{-rT/2}) e^{-rt} S(t) & \text{if } t < T/2 \\ e^{-rt} S(t) - e^{-rT/2} S(T/2) & \text{if } t \ge T/2 \end{cases}$$

Since

$$e^{-rt}S(t) = S(0) + \int_0^t \sigma e^{-ru}S(u) \,d\widetilde{W}(u),$$

it follows that

$$e^{-rt}V(t) = V(0) + \int_0^t \widetilde{\Gamma}(u) d\widetilde{W}(u)$$

where

$$\widetilde{\Gamma}(u) = \begin{cases} \sigma \left(1 - e^{-rT/2} \right) e^{-ru} S(u) & \text{if } u < T/2 \\ \sigma e^{-ru} S(u) & \text{if } u \ge T/2 \end{cases}$$

hence

$$\Delta(t) = \begin{cases} 1 - e^{-rT/2} & \text{if } t < T/2 \\ 1 & \text{if } t \ge T/2 \end{cases}$$