
Software Engineering Methods
Dr. Alberto Bacchelli

Friso Abcouwer, Rob van Bekkum, Moritz Beller,
Thijs Boumans, Aimee Ferouge, Jan Giesenberg

Final Exam

Nov 7, 2013 @ 13:45 - 15:45

First Name:

Last Name:

Student Number:

NetID:

Course code:

Seat row:

Seat column:

READ THE INSTRUCTIONS CAREFULLY!
Failure to comply to any of the following instructions means invalidation of your exam:

1. This is a closed book exam. The use of any external resource (e.g., your laptop, notes,
and colleagues) is not allowed.

2. Write in a readable way.

3. Complete the table above with your data (‘course code’ refers to the code for
registering your result on OSIRIS).

4. Write your name on each sheet of paper.

5. Write all your solutions on the official paper sheets; other papers will be ignored.

6. Once finished, put everything within an empty official sheet, and write your name and
student number in large on the first page.

2 Software Engineering Methods

Correction Sheet

Exercise Points Result Notes

1.1 2.5

1.2 2.5

1.3 3.0

1.4 2.0

2.1 6.0

2.2 4.0

2.3 6.0 (opt)

3.1.a 3.0

3.1.b 3.0

3.2 2.0

3.3 2.0

4.1 3.0

4.2 3.0

4.3 4.0

4.4 3.0 (opt)

5.1 4.0

5.2 2.0

5.3 4.0

6.1.a 1.0

6.1.b 3.5

6.2.a 1.5

6.2.b 4.0

Total 60 (+ 9 opt)

Software Engineering Methods 3

Exercise 1 - Warm up (10 pts)

Exercise 1.1 - 2.5 pts
Fill in the blanks1 on the following statements about SOLID object-oriented design principles, using one word
from those in the brackets:
There should (1)_______[never/sometimes/always] be more than one reason for a class to
change. Software entities should be (2)_______[open/closed] for extension and
(3)_______[open/closed] for modification. The preconditions of a substitutable
derived class are no (4)_______[weaker/stronger] than its base class methods.

Exercise 1.2 - 2.5 pts
Expand the following acronym:2 S. O. L. I. D.

Exercise 1.3 - 3.0 pts
Write a short paragraph (around 5 sentences) about the disadvantages of design patterns.

Exercise 1.4 - 2.0 pts
Explain what cohesion is in software architecture. Then, give an example of a class with high cohesion, and an
example of a class with low cohesion.

1Use an external official sheet to write your answers, just mention the number before the blank to specify which answer you are giving.
For example, you can write: (1) = always, (2) = closed, ...

2Use an external official sheet to write your answers, just mention the letter before the blank to specify which answer you are giving. For
example, you can write: S = special principle, O = other principle, ...

4 Software Engineering Methods

Exercise 2 - Software Metrics (10 pts) (+ 6 optional pts)

Exercise 2.1 - 6.0 pts
Give three examples of estimation techniques that can be used to estimate the cost of a software project, along
with one disadvantage for each of these techniques.

Exercise 2.2 - 4.0 pts
Why is it bad to measure programmer productivity by the LOC (lines of code) they produce? Give two
arguments.

Optional exercise 2.3 - 6.0 pts
We can use the Goal-Question-Metric approach to find or prevent the occurrence of design flaws in a system.
Pick a design flaw out of God Class, Method Envy and Data Class, then define the Goal for that design flaw and
3 related Questions with 1 Metric each. Give the full name and/or a description of the metric, not just an
abbreviation. Make sure to avoid overly vague metrics.

Software Engineering Methods 5

Exercise 3 - Design Patterns - I (10 pts)

Exercise 3.1 - 6.0 pts
For each of the scenarios below, discuss: (1) which design pattern could be used, (2) why it would be a good
idea to apply this pattern and (3) provide a simple class diagram that shows the applied pattern.

a. You are improving the software implementation of a machine that autonomously prepares ice creams. The
machine prepares the ice creams by combining different ingredients. Among these ingredients are different
flavours of ice cream (that is, strawberry, vanilla and banana) and several toppings (that is, chocolate chips,
almond crisps and stroopwafel crumbs) that can be added, each with its own price. (3 pts)

b. As a game developer you are working on a motorcycle game in which the player can race and complete
missions. The game contains several power-ups that can be picked up, each with different effects. One of
the power-ups increases the speed of the motor, another power-up increases the available time for a
mission in the game, and another temporarily increases the score that can be earned (a combo power-up).
(3 pts)

Exercise 3.2 - 2.0 pts
The state pattern and strategy pattern are in some aspects very similar. Explain the most important difference
between these two design patterns (concerning what the patterns are intended for) (max. 40 words for your
answer).

Exercise 3.3 - 2.0 pts
Is it possible to compound design patterns? If so, give an example of such a compound pattern and explain of
which patterns it consists, otherwise explain why this is not possible.

6 Software Engineering Methods

Exercise 4 - Design Patterns - II (10 pts) (+ 3 optional pts)

Exercise 4.1 - 3.0 pts
Both the strategy pattern and double dispatch can be used to decide a type of behavior. Explain the
differences between double dispatch and the strategy pattern.

Exercise 4.2 - 3.0 pts
Describe one advantage and one disadvantage of the Observer pattern (you can reference those presented in
the “Holub on Patterns” appendix).

Exercise 4.3 - 4.0 pts
You are working in Java on a multi-threaded application. You are working on a class GoodCode that is currently
tracked using a static variable inside a manager class, refactor the code below so that it uses the Singleton
pattern, and write down the corresponding code.

class GameManager{
static GoodCode gc = new GoodCode ();

}

class GoodCode{
int grade;

public GoodCode (){
grade =10;

}
}

Optional exercise 4.4 - 3.0 pts
Explain how the open-closed principle is supported by the abstract factory class used in the abstract factory
pattern.

Software Engineering Methods 7

Exercise 5 - Requirements Engineering (10 pts)

Exercise 5.1 - 4.0 pts
Fill the four empty cells in the following table:3

Activity name Activity description

Feasibility study

Find out what the system stakeholders require from the system

Define the requirements in a form understandable to the
customer

Requirements specification

1

2

3

4

Table 1: Requirements Engineering Activities

Exercise 5.2 - 2.0 pts
Indicate whether the next requirements (for a Frogger game) are functional (F) or non-functional (NF).

a. The game should have a multiplayer mode.

b. As an Linux user, I should also be able to play the game.

c. A log should be generated in the form of a .txt file, keeping track of the player’s moves.

d. The game is won if three frogs reach the other side of the game field.

Exercise 5.3 - 4.0 pts
Evolutionary prototyping and throw-away prototyping are types of prototyping that are suitable in different
situations. Please explain when to use evolutionary prototyping and when to use throw-away prototyping.

3Use an external official sheet to write your answers, use the numbers as a reference. For example, you can write: (1) = A study that ...,
(2) = ...

8 Software Engineering Methods

Exercise 6 - Closing (10 pts)

Exercise 6.1 - 4.5 pts
Consider the Java code below, taken from a fictitious video game.

public String randomEncounter(String playerClass , int enemyHealth , int playerHealth) {

while (enemyHealth > 0) {

switch (playerClass) {
case "mage":

castFireBall ();
break;

case "warrior":
swingSword ();
break;

case "bard":
playSong ();
break;

}

if (playerHealth =< 0) { return "Battle lost ..."; }

}
return "Battle won!";

}

a. What is the amount of LOC (lines of code) in the code stated above? (1 pts)

b. The ‘switch’ statement in the aforementioned code is a very bad design idea. How would you refactor it,
so that it does not need the ‘switch’ anymore? (hint: Replacing the ‘switch’ with ‘if’ or ‘else if’
statements is not a good solution!) (3.5 pts)

Exercise 6.2 - 5.5 pts
Consider the class diagram in the figure below:

Adapter
Make a class appear to support a familiar interface that it doesn’t actually support. This way,
existing code can leverage new, unfamiliar classes as if they are existing, familiar classes, elimi-
nating the need to refactor the existing code to accommodate the new classes.

Adaptee: An object that doesn’t support
the desired interface

Target: The interface you want the
Adaptee to support.

Adapter: The class that makes the
Adaptee appear to support the Target
interface. Class Adapters use derivation.
Object Adapters use containment.

APPENDIX ■ A DESIGN-PATTERN QUICK REFERENCE362

What Problem Does It Solve?
1. A library that you’re using just isn’t working

out, and you need either to rewrite it or to
buy a replacement from a third party and
slot this replacement into your existing
code, making as few changes as possible.

2. You may need to refactor a class to have a
different interface than the original version
(you need to add arguments to a method or
change an argument or return-value type).
You could have both old-style and new-style
versions of the methods in one giant class,
but it’s better to have a single, simpler class
(the new one) and use Adapter to make the
new object appear to be one of the old ones
to existing code.

3. Use an Adapter to make an old-style object
serialized to disk appear to be a new-style
object when loaded.

Pros (✔) and Cons (✖)
✔ Makes it easy to add classes without

changing code.

✖ Identical looking Object and Class Adapters
behave in different ways. For example, new
ObjectAdapter(obj)and new ClassAdapter(obj)
are both supported; the Object Adapter simply
wraps obj, but the Class Adapter copies the
fields of obj into its superclass component.
Copying is expensive. On the plus side, a Class
Adapter is an Adaptee, so it can be passed to
methods expecting an object of the Adaptee
class and also to methods that expect the
Target interface. It’s difficult to decide whether

an Object or Class Adapter is best. It’s a main-
tenance problem to have both.

✖ Difficult to implement when the library is
designed poorly. For example, java.io.Input-
Stream is an abstract class, not an interface,
so you can’t use the Class-Adapter pattern to
create a RandomAccessFile that also supports
the InputStream interface (you can’t extend
both RandomAccessFile and InputStream). You
can use Object Adapter, or you can refactor
the code to make InputStream an interface (as
it should have been) and then implement that
interface in an AbstractInputStream that has
all the functionality now in InputStream.
Collections do it correctly.

Often Confused With
Mediator: Mediator is the dynamic-model
equivalent of Adaptor. Adapters are passive,
passing messages to single Adaptees. Mediators
interact with many colleagues in complex ways.

Bridge: Adapters change interfaces. Bridges
isolate subsystems. Adapters are little things;
Bridges are big.

Decorator: The encapsulated object in Deco-
rator has the same interface as the container.
Decorator modifies the behavior of some
method or adds methods, but otherwise
looks exactly like the wrapped object. Object
Adapters have different interfaces than the
wrapped object and don’t change its behavior.

See Also
Mediator, Bridge, Decorator

ObjectInputStream

+readObject ()
+writeObject();
//...

Iterator

+hasNext (): boolean
+next (): Object
+remove (): void

public Object next()
{ return in.readObject();
}

ObjectIterator

+hasNext (): boolean
+next(): Object
+remove (): void

Object
AdapterAdaptee

Target

Adapter

Class
Adapter

Target

Adapter

Adaptee

WrappedObjectIterator

+hasNext (): boolean
+next(): Object
+remove (): void

in

public Object next()
{ return super.readObject();
}

388x_Ch05_Appendix_CMP3 8/17/04 1:06 PM Page 362

b

Figure 1: A class diagram of an application of a design pattern

a. Which design pattern is depicted in the diagram? (hint: Do not be misled by the name of some classes!)
(1.5 pts)

b. What problem does it solve? Also mention one scenario (excluding the one in the above figure) in which it
is useful. (4 pts)

