Mid-term Exam Signal Processing TI2716-A

September 25^{th} , 2014 09:00 - 11:00 h

- This exam has four questions, for which a total of 27 points can be obtained.
- The allotted time for this exam is 2 hours.
- Use of the Equation Sheet TI2716-A is permitted.
- Please answer each question on a new sheet of paper.
- Questions may be answered in Dutch or English.

Question 1 (5 points total)

An input-output system S is given by

$$y[n] = x[n] - 5x[n-1] + 1.$$

- (a) (1 p.) Show whether or not the system is causal.
- (b) (2 p.) Show that the system is time-invariant.
- (c) (2 p.) Use the superposition principle to show that the system is not linear.

Question 2 (9 points total)

Given is an LTI system S_1 with the following impulse response:

$$h_1[n] = \delta[n] - 2\delta[n-1].$$

- (a) (1 p.) Give the input-output relation (in terms of input x[n] and output y[n]) for this system.
- (b) (1 p.) S_1 is an FIR filter. What is the order of the filter?

As input to S_1 , the following signal $x_1[n]$ is given:

-	n	≤ -2	-1	0	1	2	3	4	≥ 5
	x[n]	0	0	1	2	2	1	0	0

- (c) (1 p.) Write the input signal $x_1[n]$ as a sum of impulse signals $\delta[n]$.
- (d) (2 p.) Determine output $y_1[n]$ by convolving $h_1[n]$ and $x_1[n]$.

Given is another LTI system \mathcal{S}_2 with the following impulse response:

$$h_2[n] = 2\delta[n] + \delta[n-2].$$

System \mathcal{S}_1 and \mathcal{S}_2 are put in cascade as indicated in Figure 1.

Figure 1: Cascaded system S_3 , composed of the LTI systems S_1 and S_2 .

- (e) (2 p.) Determine the overall impulse response h[n] of the cascaded system S_3 .
- (f) (2 p.) Determine the output y[n] of this cascaded system for input signal $x_1[n]$.

Question 3 (7 points total)

A time-continuous sinusoidal signal is given by

$$x(t) = 2\cos(400\pi t - \pi/2).$$

- (a) (2 p.) Sketch a plot of this signal for $t \in [0, 0.02 \text{ s}]$. What is the signal period, and what is the first t > 0 for which the signal reaches its maximum value?
- (b) (1 p.) What is the Nyquist sampling rate of this signal?
 - x(t) is sampled at $f_s = 800$ (Hz).
- (c) (2 p.) Give the expression for the resulting discrete-time signal x[n], and sketch a plot of that signal for $n \in [0, 20]$.

From this discrete-time signal x[n], a continuous signal can be reconstructed again. Assume we can achieve perfect reconstruction, so reconstruction yields a sinusoidal signal.

(d) (2 p.) In case we reconstruct a continuous-time signal from x[n] using a sampling frequency of 200 Hz, what is the frequency of the reconstructed signal, and what is the audible difference between this signal and the original signal x(t)?

Question 4 (6 points total)

- (a) (1 p.) Express the complex number $z = -2 2\sqrt{3}j$ in the form of polar coordinates. The argument/phase should be between 0 and 2π .
- (b) (1 p.) Express z in the form of a complex exponential. Again, the argument/phase should be between 0 and 2π .
- (c) (1 p.) Write the complex exponential $w = 2e^{j\frac{\pi}{2}}$ in Cartesian form a + bj.
- (d) (1 p.) Plot w and z on the complex plane. Please make separate plots for w and z.
- (d) (2 p.) Calculate $z \times w$. Express the result both in Cartesian form, and as a complex exponential.

