EXAM DISCRETE OPTIMIZATION (WI4227)

21 january 2014, 14.00 - 17.00 (3 hours).

This exam consists of 5 problems worth 90 pts in total. Please write your name on every sheet (including this one).

During the exam, books, written notes, graphical calculators and mobile phones are *not allowed*. **Good luck!**

Na	ime:	Student number:	
[18pts] 1.	The following questions are worth 2pts each. answer(s).	In each question check the	box(es) of the correct
(a)	 Which of the following statements are true? □ For any matrix A, the collection of independent sets of a matroid. □ For any bipartite graph G, the collection matroid. □ For any graph G, the collection {I ⊆ V there is a matching M in is the collection of independent sets of 	ion of stable sets form the in G that covers all nodes in	independent sets of a
(b)	Which of the following statements are true? \square If B and B' are bases of a matroid M , the set $(B \cup \{y\}) \setminus \{x\}$ is a basis of M \square If r is the rank function of a matroid, the all subsets A and B of the ground set. \square If r is the rank function of a matroid of $P = \{x \in \mathbb{R}^S \mid x \geq 0, \ x(U) \leq r(U) \}$ is an integral polytope.	then $r(A) + r(B) \ge r(A \cup B)$ on the ground set S , then the	$+r(A\cap B)$ holds for
(c)	Given an undirected graph $G = (V, E)$ two minimum cost s - t path can be found in poly \Box using the algorithm of Bellmann-Ford, the same cost as the edge, provided th \Box using the algorithm of Dijkstra, provid \Box by solving a corresponding matching \Box that G has no negative cost cycles.	nomial time after replacing each edge by at G has no negative cost ced that all costs are nonneg	two opposite arcs of ycles.
(d)	Consider the Traveling Salesman Problem. V ☐ For metric TSP, the heuristic of Christiator 1.5 of optimum. ☐ The subtour bound can be computed i ☐ For metric TSP, the nearest neighbour factor 10 ⁵² of optimum.	stofides always gives a solu n polynomial time using th	tion that is within a e ellipsoid method.

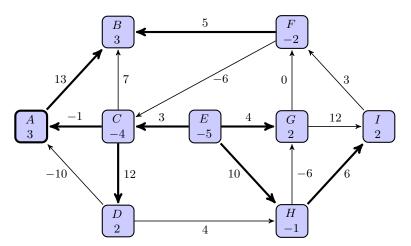
Hand in this sheet!			
(i)	A matching M in a bipartite graph has maximum size if and only if \Box there is a vertex cover U of size $ U = M $. \Box no edge can be added to M to create a larger matching. \Box there is no M -augmenting path.		
(h)	Given a capacitated network, a flow from s to t under the capacity, and an s - t cut $\delta^{\mathrm{out}}(U)$. If the value of the flow equals the capacity of the cut, then what can we conclude? \Box On each arc leaving U , the amount of flow equals the capacity of the arc. \Box On each arc entering U , the amount of flow equals zero. \Box The amount of flow leaving U minus the amount entering U equals the flow value.		
(g)	Let $P := \{x \mid Ax \leq b\} \subseteq \mathbb{R}^n$ be a polyhedron, where A and b are integral. Which statements are true? \square If P is pointed, then P is a polytope. \square P is a polytope if and only if A has rank n . \square If P is polytope, then any inequality $c^T x \leq d$ valid for the integer hull of P has a cutting plane proof starting from the system $Ax \leq b$.		
(f)	Let A be a square matrix. Which of the following conditions imply that A is Totally Unimodular? \Box The determinant of A equals -1 , 0 or 1 . \Box Every column of A contains exactly two nonzero entries: a 1 and a -1 . \Box For every integral b , the polytope $\{x \mid Ax \leq b, x \geq 0\}$ is integral (or empty).		
(e)	Which statements about the Blossom algorithm for minimum weight perfect matching are true? □ At any stage of the algorithm, any perfect matching in G that uses only tight edges is automatically a minimum weight perfect matching. □ The algorithm cannot be applied to bipartite graphs, because they have no blossoms. □ When contracting a blossom, it becomes an even (pseudo) node.		

EXAM DISCRETE OPTIMIZATION (WI4227)

[18pts] **2.** Let $P \subseteq \mathbb{R}^3$ be defined by

$$x \ge \mathbf{0}, \quad x_1 + 2x_2 + 3x_3 \le 6.$$
 (1)

- [3pts] (a) Give the definition of Totally Dual Integral (TDI).
- [5pts] (b) Show that system (1) is not TDI.
- [10pts] (c) Give a minimal TDI system $Ax \leq b$ describing P with A and b integral. Here minimal means that none of the inequalities can be left out.
- [18pts] 3. Consider the network in the figure below, which consists of a directed graph, a demand function b on the nodes, and costs c on the arcs. There are no upper bounds: $u(a) = \infty$ for every arc a. Use the network simplex method to solve the minimum cost flow problem, starting from the given tree solution (thick arcs). The vertex A is the root. In each iteration, give the tree, the associated flow, the vector y (the cost of the paths in the tree from the root to the nodes) and the cost of the flow.



[18pts] 4. In a 3×3 table, we want to choose at least 3 cells, but in such a way that from each row, from each column, and from each of the two diagonals at most one cell is chosen. We first consider an LP relaxation.

Let $P \subseteq \mathbb{R}^{3\times 3}$ be the polytope defined by the system (2)–(5):

$$x \geq 0, \tag{2}$$

$$\sum_{i,j=1}^{3} x_{ij} \geq 3, \tag{3}$$

$$x_{1i} + x_{2i} + x_{3i} \le 1$$
 and $x_{i1} + x_{i2} + x_{i3} \le 1$ ($i = 1, 2, 3$), (4)

$$x_{11} + x_{22} + x_{33} \le 1$$
 and $x_{13} + x_{22} + x_{31} \le 1$. (5)

[3pts] (a) Let

$$z := \begin{bmatrix} \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

Determine the inequalities that are tight at z and show that z is a vertex of P.

[5pts] (b) Derive from the given system the cutting plane

$$x_{22} \le 0. (6)$$

[5pts] (c) Show that inequalities (5) are implied by inequalities (2)–(4) and (6). Hint. First show that $x_{12} + x_{32} + x_{21} + x_{23} \ge 2$.

[5pts] (d) Show that the system of inequalities (2)–(4) and (6) can be written as $Ax \leq b$ with A a totally unimodular matrix and b integral. Conclude that this system determines the integer hull of P.

[18pts] 5. In the figure below, you see a network with costs associated to the edges. The problem is to find a walk from A to H of minimum total cost that traverses all edges at least once.

[6pts] (a) Formulate this as a minimum cost T-join problem for some subset T of the nodes. Explain why solving the T-join problem solves the original problem.

[6pts] (b) Explain how this T-join problem can be reduced to a weighted matching problem. Also give the corresponding weight function.

[6pts] (c) Solve the matching problem and give a minimum cost walk from A to H traversing every edge of the graph at least once.

