
Exam Advanced Probability TW 3560
14th April 2016, 9:00-12:00

• The exam is a closed book exam. You may use a simple non-graphical
calculator.

• All solutions should be well-documented and explained.

• In the first part there are 5 questions. Every correct answer gives 1
point, you can reach maximally 5 points.

• The second part will be considered if in the first part the student
scored more than 3 points. For the second part the points are dis-
tributed as follows:

Exercise 1 Exercise 2 Exercise 3 Exercise 4
Points 2-2-2-3-2 4-2-1-1 2-2-2-3-2-2-1 3-1-2-3-2-1

• The total number of points is 50. The grade is calculated in the fol-
lowing way: grade=max(1

5
∗ ] points+ bonus, 10).

————————————————————————————————

Part I
Indicate if the following statements are true or false and explain why.

1. Let A1, ..., An, .. ∈ F denote a sequence of events defined on the prob-
ability space (Ω,F ,P). If

∑∞
n=0 P(An) =∞ then An appears infinitely

many times almost surely.

2. If Xn converges to X in distribution, then for every f Borel-measurable
function E(f(Xn))→ E(f(X)) as n→∞.

3. If there exists a unique stationary distribution for a Markov chain, then
the chain is irreducible.

4. Chebyshevs inequality is a consequence of Markov’s inequality.

5. Convergence almost surely implies convergence in distribution.
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Part II

Exercise 1

A country has m + 1 cities, m ∈ N, of which one is the capital. There is
a direct railway connection between each city and the capital but there are
no tracks between 2 “non-capital” cities. A traveler starts in the capital and
takes a train to a randomly chosen non-capital city (all “non-capital” cities
are chosen with equal probability), spends a night there, returns the next
morning and immediately boards the train to the next city according to the
same rule, spends the night there, etc. We assume that his choice of the
city is independent of the cities visited in the past. Let (Xn)n∈N denote the
number of different visited non-capital cities up to and including day n, so
that X0 = 1 and X1 = 1 or X1 = 2 etc.

1. Explain why (Xn)n∈N is a Markov chain, find the appropriate state
space S and the transition probabilities.

2. Classify the states into recurrent, transient, periodic. Sketch a transi-
tion graph for m = 3.

3. Calculate for m = 3 the distribution P(X2 = i) for i ∈ {1, 2, 3} if
P(X0 = 1) = P(X0 = 2) = 1

2
.

4. Let τm be the first time the traveler visited all non-capital cities, i.e.

τm = inf{n ∈ N : Xn = m}

What is the distribution of τm for m = 1, m = 2?

5. Compute E(τm) for general m. (Hint: You may find a geometric ran-
dom variable which is modeling the waiting time until the first success.)

6. What are stationary solution(s) π? Do we have here that limn→∞ P(Xn =
i) = πi for all i ∈ S?

Exercise 2:

1. Let X be a standard normal distribution. Show the upper and lower
bound for x ≥ 0

1√
2π

(
1

x+ 1
x

)
e−

x2

2 ≤ P(X ≥ x) ≤ 1√
2π

1

x
e−

x2

2 .
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2. Consider a sequence of i.i.d. random variables X1, ..., Xn, .. such that
Xi ∼ N(0, 1). Let Sn =

∑n
i=1Xi. Show that there exist a sequence of

real numbers (εn)n such that εn → 0 as n→∞ such that ∀x > 0:

P(Sn ≥ xn) = (1 + εn)
1√
2πn

e−n
x2

2 .

3. Deduce that for every x > 0:

lim
n→∞

1

n
log(P(Sn ≥ nx)) = −x

2

2
.

4. Let us consider now the cumulant generating function Λ(t) = log(E(etX1)).
Show that it’s Legendre transform defined by

Λ∗(x) := sup
t∈R

(t ∗ x− Λ(t))

is equal to x2

2
for all x > E(X1).

Exercise 3:

Let us consider X1, X2, .. i.i.d. random variables such that P(Xi = −1) =
P(Xi = 1) = 1

2
. We want to show that for Sn =

∑n
i=1Xi:

lim
n→∞

1

n
log(P(Sn ≥ nx)) = −I(x). (1)

where

I(z) =

{
1+z
2

log(1 + z) + 1−z
2

log(1− z) if z ∈ [−1, 1]

∞ if |z| > 1.
(2)

(Remark: We agree that 0 log(0) := 0.)

1. Argue that the claim (1) with I given in (2) is trivially true for the
special cases x = 0, x = 1 and x > 1.

2. Consider now x ∈ (0, 1). Determine the distribution of Sn+n
2

and show
that

P(Sn ≥ xn) = 2−n
∑

k≥(1+x)n/2

(
n

k

)
.
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3. Call now an(x) := dn(1+x)/2e andQn(x) := max
{(

n
k

)
: an(x) ≤ k ≤ n

}
.

Demonstrate that

2−nQn(x) ≤ P(Sn ≥ nx) ≤ (n+ 1)2−nQn(x).

4. Use Stirling’s formula limn→∞
1
n!
nne−n

√
2πn = 1 to obtain

lim
n→∞

1

n
log(Qn(x)) = −I(x) + log(2)

with I defined in (2).

5. Conclude the proof of the claim (1). What does it mean asymptotically
for large n?

6. Show that the Legendre transform of the cumulant generating function
is equal to I(x) defined in (2) for all x > E(X1).
(Hint: You may use that tanh−1(z) = 1

2
log
(
1+z
1−z

)
for z ∈ (−1, 1) and

cosh(tanh−1(z)) = 1√
1−z2 .)

7. Application: Consider an insurance company which settles a fixed num-
ber of claims (say 1 per day) and receives a steady income from pre-
mium payments each day. The sizes of the claims are random. The
company wants to minimize the risk that at the end of the month the
amount of claims realized is larger than the income. The large claims
can create problems, they appear with probability 1

2
independent of

each other. What is the probability that in April there are more than
15 large claims?

Exercise 4:

We want to estimate the energy consumption of a two factories. The first
one is using a large number of devices of type A. These devices can run in
3 different states and the energy consumption in each state is different. If
the device is running in state 1 which happens in average half of the time
then the consumption can be approximated by a normal random variable
with mean 0 and variance σ2. In state 2 it is exponentially distributed
with mean 4 which happens 1

3
of the time and finally in the third state the

consumption if geometrically distributed with parameter 1
3
. (Recall that a

random variable on {1, 2, ..} is geometrically distributed with parameter p if
P(X = k) = p(1− p)k−1.)
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1. What is the law of the total energy consumption of one device X de-
pending on σ2? Show that the mean is 11

6
and the variance is 1

2
σ2 + 353

36
.

2. Consider now Sn =
∑n

i=1Xi where Xi denotes the energy consumption
of device i. Assume that they run independent of each other. Does Sn
has a limit in distribution for large n w.r.t. some appropriate rescaling?

3. Approximate the probability that S100 exceeds 200 for σ = 5.

4. Estimate the error of this approximation.

A second factory uses other devices for their production. Their energy con-
sumption for n devices can be modeled by the following random variable

Yn = Z + δ1 + δ1/4 + ...+ δ1/n2

where Z ∼ N(0, σ2). Determine the law of Yn.

5. Show that almost surely Yn converges to W as n → ∞, where W ∼
N(π

2

6
, σ2). (Hint: You can use that

∑∞
i=1 i

−2 = π2

6
.)

6. Assume that factory 1 runs 20 devices of type A and factory 2 runs 30
devices of type B. Imagine that you work for the city and have to decide
to give a financial bonus to the company which is more environmental
friendly meaning that it consumes less energy than the other. To which
factory would you give the bonus?
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