Solutions to Exam April 2016

Part I

- 1. No in general, only if the events are independent. This is part of Borel-Cantellis theorem.
- 2. Yes, this is part of theorem 10.1.1 about equivalences of weak convergences.
- 3. No not in general, if a chain is irreducible and aperiodic then there is a unique stationary measure.
- 4. Yes, Chebyshevs inequality is a generalization.
- 5. Yes, convergence almost surely implies convergence in probability which implies convergence in distribution.

Part II

Exercise 1

1. This is a Markov chain since the choice of choosing the next city does not depend on how many different cities were visited before. The state space is $S = \{1, ..., m\}$ and the transition probabilities

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \begin{cases} \frac{i}{m} & \text{if } j = i\\ \frac{m-i}{m} & \text{if } j = i+1 \end{cases}$$

and 0 otherwise.

2. Once the chain goes to the next state it never goes back, hence the chain is not irreducible. The state m is absorbing so recurrent and the other ones are transient. The period is 1 for all states, it is possible to reach each state in 1 step.

3.

$$\left(\frac{1}{2}, \frac{1}{2}, 0\right) \left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & 0\\ 0 & \frac{2}{3} & \frac{1}{3}\\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & 0\\ 0 & \frac{2}{3} & \frac{1}{3}\\ 0 & 0 & 1 \end{array}\right) = \left(\frac{1}{18}, \frac{10}{18}, \frac{7}{18}\right)$$

- 4. $\tau_1 = 0$ for m = 1 and for m = 2 the τ_2 is distributed according to a geometric distribution with parameter $\frac{1}{2}$. After visiting the first city the traveller has of probability of $\frac{1}{2}$ to visit the second city on the next day etc.
- 5. For m > 1 write τ_m as

$$\tau_m = \tau_1 + (\tau_2 - \tau_1) + \dots + (\tau_m - \tau_{m-1})$$

 $\tau_k - \tau_{k-1}$ is the waiting time until a never visited city has been visited provided that k cities were visited before. As in (4) this is geometric random variable with parameter $\frac{m-k}{m}$, so $\mathbb{E}(\tau_m) = \sum_{k=1}^{m-1} \frac{m}{m-k}$.

1

6. We solve the system and get $\pi_k = 0$ for k = 1, ..., m - 1 and $\pi_m = 1$ since m is absorbing, we have that $\lim_{n \to \infty} \mathbb{P}(X_n = i) = \pi_i$.

Exercise 2

1. One possibility is let f denote the density of the Gaussian variable

$$\mathbb{P}(X \ge x) = \int_{x}^{\infty} \frac{1}{t} (tf(t)) dt = -\frac{1}{t} f(t) \Big|_{x}^{\infty} - \int_{x}^{\infty} \frac{1}{t^2} f(t) dt \le \frac{1}{x} f(x)$$

and

$$\mathbb{P}(X \ge x) \ge \frac{1}{x}f(x) - \frac{1}{x^2} \int_x^{\infty} f(t)dt = \frac{1}{x}f(x) - \frac{1}{x^2}\mathbb{P}(X \ge x)$$

which yields the bound

2. Remark that we have $\mathbb{P}(S_n \geq xn) = (1+\epsilon_n)\frac{1}{\sqrt{2\pi n}}e^{-n\frac{x^2}{2}}$ as soon as

$$\frac{1}{n}\log\left(\sqrt{2\pi n}\cdot\mathbb{P}(S_n\geq xn)\right) = -\frac{x^2}{2} + o(n) \tag{1}$$

and $o(n) := \frac{1}{n} \log(1 + \epsilon_n)$ which goes to 0 as $n \to \infty$. From point 1 we have that

$$\mathbb{P}(S_n \ge nx) \le \frac{1}{\sqrt{2\pi n}} e^{-n\left(\frac{x^2}{2} + \frac{\log(x)}{n}\right)} = \frac{1}{\sqrt{2\pi n}} e^{-n\left(\frac{x^2}{2} + o(n)\right)}$$

and

$$\mathbb{P}(S_n \ge nx) \ge \frac{1}{\sqrt{2\pi n}} e^{-n\left(\frac{x^2}{2} + \frac{1}{n}\log(\frac{x}{x^2 + 1})\right)} = \frac{1}{\sqrt{2\pi n}} e^{-n\left(\frac{x^2}{2} + o(n)\right)}$$

and we can see that (1) is satisfied.

3. Use point 2 and calculate

$$\frac{1}{n}\log(\mathbb{P}(S_n \ge xn)) = \frac{1}{n}\left(\log(1+\epsilon_n) - \log(\sqrt{2\pi n}) - n\frac{x^2}{2}\right) \underset{n \to \infty}{\longrightarrow} -\frac{x^2}{2}$$

4. From a simple calculation we get $\Lambda(t) = \frac{t^2}{2}$. Call $g(t) = tx - \frac{t^2}{2}$, then the maxima are given by x = t (take the derivative of g), then $\Lambda^*(x) = \frac{x^2}{2}$.

Exercise 3

- 1. For x=0, we know that due to the CLT $\mathbb{P}(S_n \geq 0) \to \frac{1}{2}$ as $n \to \infty$, hence the lhs of equation (1) is going to 0, from the definition I(0)=0. For x>1, we have $\mathbb{P}(S_n>n)=0$ so $\log(\mathbb{P}(S_n>0))=-\infty$. For x=1 we have $\mathbb{P}(S_n=n)=2^{-n}$ so the l.h.s. equals $-\log(2)=-I(1)$.
- 2. The distribution of $\frac{S_n+n}{2}$ is $Bin(\frac{1}{2},n)$ on $\{0,...,n\},$ hence

$$\mathbb{P}(S_n \ge nx) = \mathbb{P}\left(\frac{S_n + n}{2} \ge \frac{n(1+x)}{2}\right) = \sum_{k \ge n(1+x)/2} \frac{1}{2^n} \binom{n}{k}$$

- 3. For $k \ge \frac{n}{2}$, the map $k \mapsto \binom{n}{k}$ is monotonically decreasing. The lower bound is trivial since we are summing over k, for the upper bound consider that we have at most n summands (even less!).
- 4.

$$\lim_{n \to \infty} \frac{1}{n} \log(Q_n(x)) = \lim_{n \to \infty} \frac{1}{n} \log \left(\frac{n!}{a_n(x)! \cdot (n - a_n(x))!} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \left(\frac{n^n}{a_n(x)^{a_n(x)} (n - a_n(x))^{n - a_n(x)}} \right)$$

$$= -I(x) + \log(2)$$

- 5. Point 3+4 imply the claim of the proof. It means asymptotically that $\mathbb{P}(S_n \geq nx) \approx e^{-nI(x)}$.
- 6. The cumulant generating function is equal to $\Lambda(t) = \log(\cosh(t))$. We define $g(t) = tx \log(\cosh t)$ and determine the maxima at $x = \tanh(t)$ or for $t = \tanh^{-1}(x) = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Thus

$$\Lambda^*(x) = x \cdot \frac{1}{2} \log \left(\frac{1+x}{1-x} \right) - \log(\frac{1}{\sqrt{1-x}}) - \log(\frac{1}{\sqrt{1+x}})$$

simplifying yields the claim.

7. Let Y_i denote a large claim. It appears with probability $\frac{1}{2}$.

$$\mathbb{P}\left(\sum_{i=1}^{30} Y_i \ge 15\right) \approx e^{-30 \cdot I(\frac{1}{2})} \approx e^{-30 \cdot 0.13} = 0.019.$$

Exercise 4

1. The law is equal to

$$\mu_X = \frac{1}{2}\mu_{0,\sigma^2} + \frac{1}{3}Exp(1/4) + \frac{1}{6}Geo\left(\frac{1}{3}\right)$$

The mean is equal to

$$\mathbb{E}(X) = \frac{1}{2}0 + \frac{1}{3}4 + \frac{1}{6}3 = \frac{11}{6}$$

and variance

$$\mathbb{E}(X^2) - \frac{11^2}{6^2} = \frac{1}{2}\sigma^2 + \frac{1}{3}2 \cdot 16 + \frac{1}{6}15 = \frac{1}{2}\sigma^2 + \frac{79}{6} - \frac{11^2}{6^2} = \frac{1}{2}\sigma^2 + \frac{353}{36}$$

- 2. The CLT can be applied, so $\frac{1}{\sqrt{nVar(X)}}(S_n n\frac{11}{6})$ converges to a standard normal variable.
- 3. If $\sigma = 2$, then $Var(X) = \frac{425}{36} = 11.80$.

$$\mathbb{P}\left(\frac{S_{100} - 100\frac{11}{6}}{10\sqrt{11.80}} > \frac{200 - 100\frac{11}{6}}{10\sqrt{11.80}}\right) \approx \mathbb{P}(Z > 0.48) = 0.31$$

4. We can use Berry-Esséen $\frac{3\mathbb{E}(|X_1-\mathbb{E}(X_1)|^3)}{\sigma^3\sqrt{n}}$,

$$\mathbb{E}\left(\left|X_1 - \frac{11}{6}\right|^3\right) = \int_{11/6}^{\infty} \left(x - \frac{11}{6}\right)^3 \mu_X(dx) + \int_{-\infty}^{11/6} \left(\frac{11}{6} - x\right)^3 \mu_X(dx)$$

The first integral is equal to

$$\begin{split} &\frac{1}{2} \int_{11/6}^{\infty} \left(x - \frac{11}{6}\right)^{3} \mu_{(0,4)}(dx) + \frac{1}{3} \int_{11/6}^{\infty} \left(x - \frac{11}{6}\right)^{3} \frac{1}{4} e^{-\frac{1}{4}x} dx + \frac{1}{6} \sum_{k \geq 2} \left(k - \frac{11}{6}\right)^{3} \left(\frac{2}{3}\right)^{k-1} \frac{1}{3} \\ &= 0.44 + 80.93 + 8.79 = 90.16 \end{split}$$

and the second to

$$\begin{split} &\frac{1}{2} \int_{-\infty}^{11/6} \left(\frac{11}{6} - x\right)^3 \mu_{(0,4)}(dx) + \frac{1}{3} \int_{0}^{11/6} \left(\frac{11}{6} - x\right)^3 \frac{1}{4} e^{-\frac{1}{4}x} dx + \frac{1}{6} \left(\frac{11}{6} - 1\right)^3 \frac{1}{3} \\ &= 14.52 + 0.21 + 0.03 = 14.76 \end{split}$$

hence the error is $\frac{3 \cdot 104.92}{2^3 \cdot 10} = 3.93$, big!

5. The law is $N(\sum_{i=1}^{n} i^{-2}, \sigma^2)$. We will show that Y_n is a Cauchy-sequence, i.e. for all $\epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}(\sup_{m > n} |Y_n - Y_m| > \epsilon) = 0,$$

indeed since Y_n is increasing,

$$\mathbb{P}(\sup_{m>n}|Y_n - Y_m| > \epsilon) \le \frac{\mathbb{E}(\sup_{m>n}|Y_n - Y_m|)}{\epsilon} \le \frac{\mathbb{E}(\sum_{i=n}^{\infty} U_{i-2})}{\epsilon} = \frac{1}{\epsilon} \sum_{i=n}^{\infty} i^{-2}$$

which is going to 0 since the series is convergent.

6. We can compare the average energy consumption. For factory 1 it is $20 \cdot \frac{11}{6} = 36.66$ and for the factory 2 we have $\mathbb{E}(Y_{30}) = 0.56$ (you can also use bounds for Y_{30}), so much smaller consumption.