
Solutions to Exam April 2016

Part I

1. No in general, only if the events are independent. This is part of Borel-
Cantellis theorem.

2. Yes, this is part of theorem 10.1.1 about equivalences of weak conver-
gences.

3. No not in general, if a chain is irreducible and aperiodic then there is a
unique stationary measure.

4. Yes, Chebyshevs inequality is a generalization.

5. Yes, convergence almost surely implies convergence in probability which
implies convergence in distribution.

Part II

Exercise 1

1. This is a Markov chain since the choice of choosing the next city does not
depend on how many different cities were visited before. The state space
is S = {1, ...,m} and the transition probabilities

P(Xn+1 = j|Xn = i) =

{
i
m if j = i
m−i
m if j = i+ 1

and 0 otherwise.

2. Once the chain goes to the next state it never goes back, hence the chain
is not irreducible. The state m is absorbing so recurrent and the other
ones are transient. The period is 1 for all states, it is possible to reach
each state in 1 step.
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4. τ1 = 0 for m = 1 and for m = 2 the τ2 is distributed according to a
geometric distribution with parameter 1

2 . After visiting the first city the
traveller has of probability of 1

2 to visit the second city on the next day
etc.

5. For m > 1 write τm as

τm = τ1 + (τ2 − τ1) + ...+ (τm − τm−1)

τk − τk−1 is the waiting time until a never visited city has been visited
provided that k cities were visited before. As in (4) this is geometric

random variable with parameter m−k
m , so E(τm) =

∑m−1
k=1

m
m−k .
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6. We solve the system and get πk = 0 for k = 1, ...,m− 1 and πm = 1 since
m is absorbing, we have that limn→∞ P(Xn = i) = πi.

Exercise 2

1. One possibility is let f denote the density of the Gaussian variable

P(X ≥ x) =

∫ ∞
x

1

t
(tf(t))dt = −1

t
f(t)

∣∣∣∣∞
x

−
∫ ∞
x

1

t2
f(t)dt ≤ 1

x
f(x)

and

P(X ≥ x) ≥ 1

x
f(x)− 1

x2

∫ ∞
x

f(t)dt =
1

x
f(x)− 1

x2
P(X ≥ x)

which yields the bound

2. Remark that we have P(Sn ≥ xn) = (1 + εn) 1√
2πn

e−n
x2

2 as soon as

1

n
log
(√

2πn · P(Sn ≥ xn)
)

= −x
2

2
+ o(n) (1)

and o(n) := 1
n log(1 + εn) which goes to 0 as n → ∞. From point 1 we

have that

P(Sn ≥ nx) ≤ 1√
2πn

e
−n

(
x2

2 +
log(x)

n

)
=

1√
2πn

e
−n

(
x2

2 +o(n)
)

and

P(Sn ≥ nx) ≥ 1√
2πn

e
−n

(
x2

2 + 1
n log( x

x2+1

)
=

1√
2πn

e
−n

(
x2

2 +o(n)
)

and we can see that (1) is satisfied.

3. Use point 2 and calculate

1

n
log(P(Sn ≥ xn)) =

1

n

(
log(1 + εn)− log(

√
2πn)− nx

2

2

)
−→
n→∞

−x
2

2

4. From a simple calculation we get Λ(t) = t2

2 . Call g(t) = tx− t2

2 , then the

maxima are given by x = t (take the derivative of g), then Λ∗(x) = x2

2 .

Exercise 3

1. For x = 0, we know that due to the CLT P(Sn ≥ 0) → 1
2 as n → ∞,

hence the lhs of equation (1) is going to 0, from the definition I(0) = 0.
For x > 1, we have P(Sn > n) = 0 so log(P(Sn > 0)) = −∞. For x = 1
we have P(Sn = n) = 2−n so the l.h.s. equals − log(2) = −I(1).

2. The distribution of Sn+n
2 is Bin( 1

2 , n) on {0, ..., n}, hence

P(Sn ≥ nx) = P
(
Sn + n

2
≥ n(1 + x)

2

)
=

∑
k≥n(1+x)/2

1

2n

(
n

k

)
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3. For k ≥ n
2 , the map k 7→

(
n
k

)
is monotonically decreasing.The lower bound

is trivial since we are summing over k, for the upper bound consider that
we have at most n summands (even less!).

4.

lim
n→∞

1

n
log(Qn(x)) = lim

n→∞

1

n
log

(
n!

an(x)! · (n− an(x))!

)
= lim
n→∞

1

n
log

(
nn

an(x)an(x)(n− an(x))n−an(x)

)
= −I(x) + log(2)

5. Point 3 + 4 imply the claim of the proof. It means asymptotically that
P(Sn ≥ nx) ≈ e−nI(x).

6. The cumulant generating function is equal to Λ(t) = log(cosh(t)). We
define g(t) = tx − log(cosh t) and determine the maxima at x = tanh(t)

or for t = tanh−1(x) = 1
2 log

(
1+x
1−x

)
. Thus

Λ∗(x) = x · 1

2
log

(
1 + x

1− x

)
− log(

1√
1− x

)− log(
1√

1 + x
)

simplifying yields the claim.

7. Let Yi denote a large claim. It appears with probability 1
2 .

P

(
30∑
i=1

Yi ≥ 15

)
≈ e−30·I( 1

2 ) ≈ e−30·0.13 = 0.019.

Exercise 4

1. The law is equal to

µX =
1

2
µ0,σ2 +

1

3
Exp(1/4) +

1

6
Geo

(
1

3

)
The mean is equal to

E(X) =
1

2
0 +

1

3
4 +

1

6
3 =

11

6

and variance

E(X2)− 112

62
=

1

2
σ2 +

1

3
2 · 16 +

1

6
15 =

1

2
σ2 +

79

6
− 112

62
=

1

2
σ2 +

353

36

2. The CLT can be applied, so 1√
nV ar(X)

(Sn−n 11
6 ) converges to a standard

normal variable.

3. If σ = 2, then V ar(X) = 425
36 = 11.80.

P
(
S100 − 100 11

6

10
√

11.80
>

200− 100 11
6

10
√

11.80

)
≈ P(Z > 0.48) = 0.31
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4. We can use Berry-Esséen 3E(|X1−E(X1)|3)
σ3
√
n

,

E

(∣∣∣∣X1 −
11

6

∣∣∣∣3
)

=

∫ ∞
11/6

(
x− 11

6

)3

µX(dx) +

∫ 11/6

−∞

(
11

6
− x
)3

µX(dx)

The first integral is equal to

1

2

∫ ∞
11/6

(
x− 11

6

)3

µ(0,4)(dx) +
1

3

∫ ∞
11/6

(
x− 11

6

)3
1

4
e−

1
4xdx+

1

6

∑
k≥2

(
k − 11

6

)3(
2

3

)k−1
1

3

= 0.44 + 80.93 + 8.79 = 90.16

and the second to

1

2

∫ 11/6

−∞

(
11

6
− x
)3

µ(0,4)(dx) +
1

3

∫ 11/6

0

(
11

6
− x
)3

1

4
e−

1
4xdx+

1

6

(
11

6
− 1

)3
1

3

= 14.52 + 0.21 + 0.03 = 14.76

hence the error is 3·104.92
23·10 = 3.93, big!

5. The law is N(
∑n
i=1 i

−2, σ2). We will show that Yn is a Cauchy-sequence,
i.e. for all ε > 0

lim
n→∞

P( sup
m>n
|Yn − Ym| > ε) = 0,

indeed since Yn is increasing,

P( sup
m>n
|Yn−Ym| > ε) ≤

E(supm>n |Yn − Ym|)
ε

≤
E(
∑∞
i=n Ui−2)

ε
=

1

ε

∞∑
i=n

i−2

which is going to 0 since the series is convergent.

6. We can compare the average energy consumption. For factory 1 it is
20 · 116 = 36.66 and for the factory 2 we have E(Y30) = 0.56 (you can also
use bounds for Y30), so much smaller consumption.
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