Exam: Continuous Optimisation 2015

3TU- and LNMB-course, Utrecht.
Monday 4™ January 2016

1. Let fj(z), 7=1,...,k (1 <k € N), be convex functions defined on a convex set
CCcR"
(a) Consider with (given) a; > 0, j = 1,...,k, the function f(z) := Zle a;fi(z). [3 points]
Show that f is convex on C.

(b) Show that also g(z) := max;<j<x {f;(z)} is a convex function on C. [3 points]

Solution:

(a) For z,y € C, A € [0,1] we find using convexity of the f;’s and a; > 0:
k
JOAz+(1=Ny) = Y afiha+ (1= A)y)
j=1
k
f; convex, a; >0 < Z aj[Afi(z) + (1= X)f;(y)]
j=1

k k
= AD_aifi@)]+ (=N aif;w)]
j=1 Jj=1
= M@)+ 1 -N)f(y)
(b) For z,y € C, A € [0,1] we find using convexity of the f;’s:

gAr + (1 = N)y) lrg%{fj(m + (1 =Ny}

< 1r£1]ga£<]€{)\fj(x) + 1 =N fi(v)}
< Almax f3(@)] + (1 = A) max {fi(y)}

= Ag(z) + (1= Ng(y)

where in the second < we used that “max of a positive sum of functions
< positive sum of max of the functions”.
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2. Consider the convex program [3 points]

(CO) m%gnf(:r:) st. rzeF:={relR"|g(z)<0,j=1,...,m},
reR?
with convex functions f, g; € C*(R",R).
Show that if T € F satisfies the KKT-conditions (Karush-Kuhn-Tucker conditions)
for (CO) with a multiplier vector ¥ > 0 then (Z,7) is a saddle point for the La-
grangian function L(z,y) of (CO).

Solution: KKT-conditions means that T € F satisfies with iy > 0,

(Vo L(Z,9) =) V@) + > 3V (T) =0 with 7,g;(T) =0Vj € J .

jeJ
So (by Th. 3.4) T is a global solution of min,cg~ L(x,7) and thus
L(z,y) < L(z,y) VzeR" (%)

Moreover since T is feasible, ie., g;(Z) < 0 Vj, and using 7,9;(T) = 0 we
obviously obtain for all y > 0:

L(@,y) = f(®) + Dy < (@) = f(@) + Y _7,9;(F) = L(Z,7) -

jeJ jeJ

Together with (x) this shows that (7,7) is a saddle point of L.
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3. Consider the two problems

(1) ireli%% fl@) st gi(z)=af—2,<0

(P,)  min f(z) st. go(z) = —27 —2, <0

z€R2
both with the same objective f(z) = 222 + z5.

(a) Which of these programs (P;), (P:) is a convex problem? Sketch for both
problems the feasible set and the level set of f given by f(x) = f(0,0).

(b) Determine for both programs a (the) KKT-point Z with corresponding La-
grangean multiplier 7.

(c¢) Show for both problems that T is a (local) minimizer. Is it a global minimizer?

Solution:
(a) f,g1 are convex (e.g., show that Hessian is pos. semidef.). But g is not

convex, V2gy(z) = (72 ) is not positive semidefinite. So (P,) is convex,

(P,) is not. (Give two complete sketches).

(b) The KKT-conditions read
4.171 2231 . X . . _
For (P,): 1 +pq 1) = 0 with unique solution uy = 1,7 =75 =00

1 -1
Note that for both ¢, go must be active.

4 -2
For (P): < 931)+M2< xl) = 0 with unique solution puy = 1,7, =75 + 0

(c) Since (P) is convex the KKT-point T = 0 must be a global minimizer (see
Th. 3.7).
Since (P;) is not convex we have to check the second order conditions (in
Th. 5.9) (or we can directly argue as below): we compute

Co={d|Vf@)"'d<0,Vg(x)'d <0} ={d=(d,dy) | dy = 0}

and thus

40 —20
A"V L(T =d’ d=2d>>0
Vi) = (o o)+ oy )i 28>

for all d = (d,,0) € Cz\ {0},i.e.,dy # 0. So T is a local minimizer.
It is a global minimizer since g, < 0 or —x% < x9 implies:

223 4+ w9y > 227 — 7 > 0= f(T) Vieasible x.

[3 points]
[3 points]

[4 points]
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4. Consider the auxiliary program of the SQP-method (for solving a nonlinear program
(P)) with some z3 € R™:

1
(Qk)  min Vﬂmfd+§flm st. Vogi(ze)'d+gj(z) <0 VjeJ
Assume z, is feasible for (P), i.e., g;j(xy) < 0Vj € J, and Ly is positive definite.
Show that if dj, # 0 is a solution of (Q) then dj is a descent direction for f, i.e.,
Vf(xk)Td < 0.

Solution: Since xy, is feasible for (P), i.e., gj(z) < 0,Vj, obviously d = 0 is
feasible for (Qy). Since dj is a global minimizer of (Qy) (why global?; (Qy) is
convex!) we must have:

1 S
Vf(ae) dy, + §d£Lkdk < Vf()Td+sd

Lid =0
2 k

Positive definiteness of Ly implies for di # 0: V f(zy)"dp < —3d{ Lidy, < 0.

[3 points]



Exam: Continuous Optimisation 2015 Monday 4" January 2016

5. Let K = {x € R" | ||x]|s < 1Tx}, where 1 € R is the all-ones vector, and || e ||, is
the Euclidean norm.

(a) Show that /C is a proper cone. [You may assume closure.]

(b) Show that the vectors 1 and (1 — e;) are in K* for all i« = 1,...,n, where
e; € R" is the unit vector with the first entry equal to one and all other entries
equal to zero.

(c) Show that * C R’.

Solution:

(a) In order to show that K is a proper cone, we need to show that it is a
closed convex pointed full-dimensional cone. We assume closure and will
now prove the rest of the properties:

e (Convex cone:
Let x,y € K and A, Ay > 0. We have |x|[; < 1Tx and ||y]l, < 1Ty.
Therefore, letting z = A\;x + Aoy, we have

z]]2 = [[Aix + A2y |2
< [[Aix[2 + [ A2yl
= Mlx[[2 + Aof[y[|2
< M1Tx+ \lTy
=1T(\x + \2y)

=1"z.

This implies then implies that z € .

e Pointed:
Suppose we have +x € K. Then ||x||s < 1Tx and || — x| < 17(—x).
Therefore 2||x||2 = [|x]]2+ || = x[]2 < 1Tx — 1Tx = 0, and thus x = 0.

e Full-dimensional:
The vectors eq,...,e, € R™ are n linearly independent vectors and
for all i we have [|e;||, =1 = 1Te;.

(b) We have K* = {y e R" | xTy > 0 for all x € K}.
For all x € K we have 17x > [|x||z > 0, and thus 1 € K*.
For all x € K we have (1 —e;)'x = 1Tx —e/x > [|x|2 — ||ei||2/|x]]2 = 0,
and thus (1 —e;) € K*.

(c) Consider an arbitrary x ¢ R’. Then there exists i € {1,...,n} such that
x; < 0. From the proof in part (a) we have that e; € K and we have
(ei,x) = x; < 0, which implies that x ¢ K*.

[4 points]
[2 points]

[1 point]



Exam: Continuous Optimisation 2015 Monday 4" January 2016

6. Consider three random variables X7, X5, X3. Suppose that corr(X;, X3) = 0.5 and
corr(Xy, X3) = —0.6.

(a) Formulate as a semidefinite optimisation problem, the problem of finding the [1 point]
minimum possible corr(Xas, X3).
(b) What is the dual problem to the problem from part (a)? [2 points]
Solution:
(a) min ¥y
1 05 —06
s.t. 05 1 y | ePSD.

(b) The problem from part (a) is equivalent to

—max — U
1 05 —06 0 0 0

s.t. 05 1 0 |-y |0 0 —1]epPSD
—-06 0 1 0 —1 0

The dual to this is then

1 05 —0.6
— min < 05 1 0 ,X>

—-06 0 1
0O 0 0
s.t. < 0 0 -1 ,X>:—1
0O -1 0
X € PSD3.

This is equivalent to

1 05 =06
max <— 0.5 1 0 ,X>
—-06 0 1
0 00
s.t < 0 0 1 ,X> =1
010
X € PSD?.
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7. Consider the following optimisation problem:

max 4xixe — x% — 921 + 4,

st. 4wl + 25— 81 +dry+4=0 (A)
X € Ri
(a) Give a finite lower bound to the optimal value of problem (A). [1 point]
(b) Give the standard completely positive approximation for this problem, the [3 points]
solution of which would provide an upper bound to the optimal value of prob-
lem (A).
Solution:

(a) To get a finite upper bound we need a feasible point. To narrow down the
search for such a feasible point, try setting x5 = 0. Then for x to be feasible
we require 427 — 8y + 4 = 0, or equivalently x; = 1. Therefore the point
(1,0) is feasible, giving us an upper bound of 4% 1%0—0%—9%1+4%0 = —9.

(b) Problem (A) is equivalent to

max 4xixe — x% — 91123 + 4923
st. 4]+ 15 — 813 + dagxs = —4 (1)

ri=1 xERi.

This is in turn equivalent to

0 2 —=9/2
max < 2 —1 2 7XXT>
-9/2 2 0
4 0 —4
s.t 0 1 2 |,xx")=-4
—4 2 0 (2)
0 00
< 00 0],xx >:1
0 01
XGRi.




Exam: Continuous Optimisation 2015 Monday 4" January 2016

This can then be relaxed to

0 2 —9/2
max < 2 —1 2 ,X>
—9/2 2 0
4 0 —4
st 001 2 |.X)=—-4
42 0 (3)
000
< 000 ,X> =1
001
X eCP’
8. (Automatic additional points) [4 points]

Question: | 12| 3 |4[5|6|7|8] Total
Points: 613103 [7|3]4|4] 40

A copy of the lecture-sheets may be used during the examination.
Good luck!



