Exam: Continuous Optimisation 2015

3TU- and LNMB-course, Utrecht.
Monday 25" January 2016

1. Let f:C — R, C C R" convex, be a convex function. Show that then the following
holds:
A local minimizer of f on C is a global minimizer on C. And a strict local minimizer
of f on C is a strict global minimizer on C.

Solution: for a local minimizer : Suppose T is not a global one. Then with
some y € C we have f(Z) > f(y). Thus for 0 < A < 1 we find with z, :=
T+ Ay — T) using convexity of f:

fl@x) < (@) + Alf(y) = fF@)] < f(T)

So letting A | 0, T cannot be a local minimizer.
for a strict local minimizer T: Suppose it is not a strict global one. Then with
some y € C,T # y we have f(Z) > f(y). Thus for 0 < A < 1 we find with

xy =T + Ay — T) using convexity of f:
f(zx) < f(@) + A[f(y) — f(@)] < f(@)

So letting A | 0, T cannot be a strict local minimizer.

2. (a) Show that for d € R™ it holds:
d"z>0VzeR" & d=0.

(b) Let ¢c,a; e R";i=1,...,m (m > 1). Show using the Farkas Lemma (lecture
sheets, Th. 3.12) that precisely one of the following alternatives (I) or (II) is
true:

(0): 'z <0, alx<0,i=1,...,m has a solution x € R".
(IT):  there exist 1 > 0,..., fty, > 0 such that: ¢+ > " wa; =0

Solution:
<a> cc:>77:
A’z >0Vr eR" = +d"e; >0Vj = d'e; =0Vj=d=0
“<:’7:
d=0=>dlz=0VzeR"=d'z >0 Vzr € R"

[3 points]

[2 points]

[3 points]
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(b) For linear functions f(x) := ¢z, g;(z) := al'x and C = R" under the Slater
condition by Farkas Lemma precisely one of I or II is true:
(I): Tz <0, alz<0,i=1,...,m has a solution .
(IT):  there exist uy >0, ..., pty, > 0 such that:

T
cloe+ ZZL pia] = {C + Z:il ﬂiai:| x>0 VreR™

In view of (a), (II) is equivalent with

(IT):  there exist y3 > 0,..., ftm > 0 such that: ¢+ > ", wa; = 0.
Note that the Slater condition is satisfied: In the linear case only feasibility
is required and obviously « = 0 is feasible for g;(z) < 0.

3. Given is the problem

(P)  min (=2z; — 22) s.t. 21 <0, and — (1 — 1) = (2, —1)*+2<0.

zeR

(a) Is (P) a convex problem? Sketch the feasible set and the level set of f given
by f(x) = f(Z) with T = 0. Is LICQ (constraint qualification) satisfied at Z?

(b) Show that the point 7 = 0 is a KKT-point of (P). Determine the corresponding
Lagrangean multipliers.

(c) Show that T is a local minimizer. What is the order of this minimizer? Is it a
global minimizer?

(d) Consider now the program (objective f and constraint function g, interchanged):

(P)  min—(r; — 1) — (29 — 1)* + 2 s.t. 1 <0, and —2x; —22<0.

zER?

Explain (without any further calculations) why Z = 0 is also a local minimizer

of (P).

Solution:

(a) (P) is not a convex program since g, is not convex: V2gy(z) = (%) is
negative definite. LICQ holds at T = 0:

1 2
Vi (z) = ( 0), Vg (T) = (2) are linearly independent

Give a complete sketch.

(b) The KKT condition for 7 = 0 (g1 and g2 active) read:

(25) (o) +2(3) =0

With (unique) solution p; = 1, us = 1/2.

[3 points]
[3 points]
[3 points]

[2 points]
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(c) Since the assumptions of Th 5.4 are satisfied, T = 0 is a local minimizer of
order p = 1.
It is not a global minimizer since f(Z) = 0 and e.g. for feasible z =
(0,23), Ty > 2 we have f(0,z5) = —oo for x5 — 0.

(d) The KKT condition at T = 0 for (P) directly yields a corresponding KKT

condition for (P) at T (feasible for (P)!!) which again satisfies the assump-
tion of Theorem 5.4 for (P).

4. Consider the (nonlinear) program: [3 points]

(P)  min f(z) st z€ F={reR"|g)<0 jeJ}

with f,g; € CYR™R), J = {1,...,m}. Let d; be a strictly feasible descent
direction in x € F. Show that for ¢ > 0, small enough, it holds:

f(l‘k + tdk) < f(:L’k) and x + td, € F

Solution: By using Taylor around z; we find for j € J,, (use g;(xx)"dp <
0; gj(zx) =0):

gi(wpttdy) = gj(zp)+tV g, (21) dito(t) = tVg(z) dp+o(t) <0 for t > 0 small enough.

By continuity also for j ¢ .J,, we have g;(zy, + tdy) < 0 for ¢ > 0 small enough.
So x, + tdy, € F. In view of f(zx)Tdy < 0 we also find

fxy +tdy) = flog) +tV f(zr) dp +o(t) < f(z) for t > 0 small enough.

5. For a given nonempty set A C R™ we define its conic hull, conic(.A) by

conic(A) := {Z pix’

=1

x' € A, ,LLiZOforalli,mEN}.

(a) Show that conic(A) is a convex cone. [2 points]
(b) Show that if A C B C R™, with B being a convex cone, then conic(A) C B. [3 points]
(c) Show that conic(.A) is full dimensional if and only if there does not exist [1 point]

y € R"\ {0} such that (y,x) =0 for all x € A.
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Solution:

(a) By Theorem 1.3, equivalently we want to show that for all u, v € conic(.A)
and Aj, A2 > 0 we have A\ju + A\gv € conic(A).

Considering an arbitrary u, v € conic(.4) and Ay, Ay > 0 we have

m p
u= Zuixi, V= ZViyia
i=1 1=1
for some x',... x™ y',...,yP € A,
ety P >0,
p,m € N.

Therefore

3

AU+ v = Z At x Z Ao’y € conic(A).
=1 35 =1 >0

(b) For k € N, let £F := {zj;l pixt | xt e A, it >0 for all z} We will prove
by induction that £F C B for all k € N, and thus B D [ J, .y £* = conic(A).

We start by proving the case of k = 1. If y € £! then y = ux for some
@ > 0 and x € A. We thus have x € B, and as B is a cone we have
y = ux € B.

We now suppose the statement is true for k, and show it is also true for
k+1. Ify e LF! theny = Zf;’ll p'x" where x* € A and p' > 0 for all 1.
Letting z' = Zle 2uixt € LF C B and z? = 2u*xF € £ C B, the set
B being convex implies that B > %zl + %Z2 =y.

Alternatively:

conic(A) = {Z,uixi

=1

= {0} U {i p'x'

=1

= {0} U {Ai@ixi

=1

= {0} UR, conv(A) = R, conv(.A).

x' € A, uizOforalli,meN}

x' € A, uiZOforalli,mEN,/\:Z,ui>O}

=1

x' €A, 6 >0foralli,meN, 1= 6, A>0

=1

As B is convex, we have conv(A) C B. As B is a cone we then get

B 2 Riconv(A) = conic(A).

}
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(c) We will prove the equivalent statement that conic(.A) is not full dimensional
if and only if there exists y € R™\ {0} such that (y,x) =0 for all x € A.

(=) Suppose conic(A) is not full-dimensional. Then by definition 1.8.3
there exists y € R"\ {0} such that (y,x) = 0 for all x € conic. 4. We
trivially have A4 C conic(.A) and thus (y,x) = 0 for all x € A.

(<) Suppose there exists y € R" \ {0} such that (y,x) = 0 for all x € A.
Then for all z € conic(A) we have z = > | u'x" for some x' € A
and p' > 0 for all 4, m € N, and thus (y,z) = >./" u'(y,x") =
0. Therefore, by definition 1.8.3, we have that conic(.A) is not full-
dimensional.

6. In this question we will consider the proper cone K C R"*? defined as

x
K= y yeR" z,2eR, [lyllo<z, 2>0
z

(a) Consider aray R = {c—yia |y € R.} with fixed a,c € R”. We wish to find
the distance between the origin and the closest point in this ray. Formulate
this problem as a conic optimisation problem over K.

(b) Give an explicit characterisation of *.
[Justification for your answer must be provided]

(c) What is the dual problem to your formulation in part (a)?
[If you were not able to answer parts (a) and (b) then instead find the dual

to: min, y s.t. c+ya€cR]. ]
Solution:
(a) This problem is equivalent to the following problems
min  [lc—yal: st oy >0,
Y1
min s
y
s.t. [le—wyalla <y, oy >0,
min 1o
y
0 0 -1
S. t. cl—-wm|lal—yp!| 0]ek
0 -1 0

[2 points]

[1 point]

[2 points]
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—max Oy, — s
y

0 0 -1
S. t. cl—-wym|lal—-yp!| 0]ek
0 —1 0

The correct answer is either of the last two formulations, or equivalent.
(b) We have that K = Ay x R, and thus £* = A5 x R} = Ay x Ry = K.

(c¢) Considering

—max Oy — 2
Yy
0 0 -1
s. t. cl—-wnlal]l—-w|0|ek
0 —1 0

the dual problem is

0
— min C
z7y’z O

0

S. t. a

This can be simplified to

max — (c,y)
T,y,z
s.t. z={(a,y)

r=1 220, [yl2<2
which in turn is equivalent to

max  {-c,y) st (ay) 20, [yl2<1L

Alternative question:

The problem is equivalent to —max, -y s.t. c—y(—a)eR].
The dual to this is —min, (¢, x) s.t. (—a,x)=-1, xeR},
which is equivalent to maxy, (—c,x) s.t. (a,x)=1, xecR}




Exam: Continuous Optimisation 2015 Monday 25" January 2016

7. Consider the following optimisation problem: [3 points]
min 223 + 5z129 — 429
s.t. 2]+ x4+ 325 — 2wyw9 = 3 (A)
x € R?.
Give the standard positive semidefinite approximation for this problem, the solution
of which would provide a lower bound to the optimal value of problem (A).
Solution:
min 2%% + 5%11’2 — 4.1'21’3
S. t. Qﬁ + 123 + 3x§ —2x109 =3
;=1
x € R?,
0 5/2 0
min < 5/2 2 -2 ,xxT>
* 0 -2 0
2 -1 1/2
S.t < -1 3 0 ,XXT> =3
/2 0 0
000
< 000 ,xxT> =1
0 01
x € R?,
0 5/2 0
min < 5/2 2 =2 ,X>
* 0 -2 0
2 -1 1/2
s. t < -1 3 0 ],X > =3
/2 0 0
000
< 00 0],X > =1
0 01
X € PSD’
[4 points]

8. (Automatic additional points)
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40

A copy of the lecture-sheets may be used during the examination.

Good luck!



