Exam Statistical Inference (WI4455) April 11, 2017, 13.30–16.30

Using books or notes is not allowed at the exam.

Unless stated differently, always add an explanation to your answer.

1. A random variable X has one of two possible densities:

$$f(x \mid \theta) = \theta e^{-\theta x}, \qquad x \in (0, \infty), \qquad \theta \in \{1, 2\}.$$

For $\mu \in [0, \infty]$, consider the family of decision rules

$$d_{\mu}(x) = \begin{cases} 1 & \text{if } x \ge \mu \\ 2 & \text{if } x < \mu \end{cases}.$$

(a) Assume loss function $L(\theta, a) = |\theta - a|$. Show that

$$R(\theta, d_{\mu}) = |\theta - 1|e^{-\theta\mu} + |\theta - 2|(1 - e^{-\theta\mu}).$$

(b) Sketch the parametrised curve

$$C = \{ (R(1, d_{\mu}), R(2, d_{\mu})) : \mu \in [0, \infty] \}.$$

- (c) Derive the value of μ for which d_{μ} is minimax.
- 2. Suppose $X \sim Ber(\theta)$.
 - (a) Find the Fisher information $I(\theta; X)$.
 - (b) Show that if we use Jeffreys' prior, then the posterior distribution is the Beta-distribution with parameters X + 1/2 and 3/2 X.

Reminder: the density of the Beta distribution with parameters α and β , evaluated at x, is proportional to $x^{\alpha-1}(1-x)^{\beta-1}$.

- 3. Suppose X_1, \ldots, X_n are independent and identically distributed random variables with the $Ber(\theta)$ distribution.
 - (a) Derive a sufficient statistic for θ .
 - (b) We consider the following two estimators for θ :

$$\hat{\Theta}_1 = \bar{X}_n$$
 (the MLE)

and

$$\hat{\Theta}_2 = \frac{\sum_{i=1}^n X_i + \alpha}{\alpha + \beta + n}$$
 (the posterior mean under the $Be(\alpha, \beta)$ prior).

Calculate the risk of both estimators under squared error loss.

- (c) Consider the special case $\alpha = \beta = \sqrt{n/4}$. Show that $\hat{\Theta}_2$ is minimax.
- 4. Suppose $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$ and assume σ^2 is known. We consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.
 - (a) Assume a Bayesian setup in which $X_1, \ldots, X_n \mid \Theta = \theta \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$ and Θ gets assigned a prior distribution. Take a flat prior on Θ : $f_{\Theta}(\theta) \propto 1$. Show that the posterior probability of H_0 equals

$$\Phi\left(\sqrt{n}\frac{\theta_0 - \bar{X}_n}{\sigma}\right),\,$$

where Φ denotes the cumulative distribution function of the standard normal distribution.

- (b) Derive an expression for the *p*-value when using a frequentist test with test statistic $T = \sqrt{n}(\bar{X}_n \theta_0)/\sigma$.
- (c) Suppose n = 10 and that an experimenter has obtained the data x_1, \ldots, x_{10} (which are considered realisations of X_1, \ldots, X_{10} . Suppose that the sampling design was such that observations were gathered sequentially until the average of the gathered observations exceeded some threshold. Comment on the validity of the p-value derived under (b).
- 5. Suppose $X \sim Unif(0,\theta)$ and we wish to estimate θ . Overestimation is considered twice as expensive as underestimation and for this reason the following loss function is used:

$$L(\theta, a) = \begin{cases} \theta - a & \text{if } \theta > a \\ 2(a - \theta) & \text{if } \theta \le a \end{cases}.$$

Assume apriori $\Theta \sim Ga(2,1)$, that is $f_{\Theta}(\theta) \propto \theta e^{-\theta} \mathbb{1}_{[0,\infty)}(\theta)$.

- (a) Derive the posterior density of Θ .
- (b) Derive the Bayes estimator for the given loss function.