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1. Let Xl,... ,Xn he a. random sample from the distribution with density 

/ ( ^ i ö ) = ^ i ( o , ö ) ( x ) n 

with respect to Lebesgue measure. 

(a) Derive an unbiased estimator for 9. Does this estimator respect the likelihood 
principle? 

(b) Show that T = m a x ( X i , . . . , Xn) is a sufficient statistic. 

(c) Show that the density of T if given by 2nt'^"^^9-^'' for 0 <t<e. 
(d) Show directly that T is complete. 

(e) Is T minimal sufficient for 97 

(f) Now suppose n = 1. Assume X \ Q = 9 has density as in (*). Let 6 have a 
uniform distribution on (0,c), where c a known (fixed) positive number. Find an 
expression for the posterior density of G . 

(g) Compute the posterior mean in the setting of exercise (f) . 

2. Let X be a random variable that takes values in { — 1, 0,1}. We want to test 

Ho : Pr(X = - 1 ) = Pr(X = 0) = Pr(X = 1) = 1/3 

versus 

Hi : Pr(X = - 1 ) = Pr(X = 1) = 1/4 Pr (X = 0) = 1/2. 

In this exercise we will use various ways to decide upon either HQ or Hi. 

(a) Show that the uniformly most powerful test of size a = 1/3 based on X leads to 
rejecting the null hypothesis when X = 0. 

(b) Calculate the power of this test. 

(c) We now take a decision theoretic point of view. We assume 6 is a random variable 
that takes values in = {0,1} and consider the random variable X that has the 
following probability mass function, conditional on G , 

Pi{X = - 1 I Q = 0) = PT{X = 0 I G = 0) = Pi{X = 1 I G = 0) = 1/3 

Pr(X = - 1 I G = 1) = Pr(X = 1 | G = 1) = 1/4 Pr(X = 0 | G = 1) = 1/2. 

We wish to find the optimal decision rule d : X Q, where X = { — 1,0,1}. 
We consider the loss function L{9,d) with L(0,0) = L ( l , 1) = 0, L(1,0) = 1 and 
L(0,1) = 3. 
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i . There are eight non-randomised decision rules i n this problem. These are given 
in the following table: 

x = —1 X = 0 X = 1 i?(0,d) R{l,d) 

dl [x) 0 0 0 0 1 

d2 f ) 0 0 1. 

ds [x) 0 1 0 
( i4 'x) 0 1 1 

ds 1 0 0 

de 1 0 1 
dj [x) 1 :i. 0 

ds 1 1 1 

Hence di always decides 0 = 0 (irrespective the value of x), ^ 2 decides 6 = 1 

only i f X = 1, etc. 

Complete the table, 

i i . F ind the minimax rule. 

iü. F ind the Bayes rule i f a pr ior i P r ( 0 = 0) = 2/3. 

(d) Suppose the prior probabihty of HQ equals 2/3 and a; = 0 is observed. What is 
the posterior probabihty of HQI 

3. A t a critical stage in the development of a new aeroplane, a decision must be taken 
to continue or to abandon the project. The financial viabi l i ty of the project can be 
measured by a parameter 9 G (0,1), the project being profitable i f Ö > 1/2. Data 
X provide information about 9. I f Ö < 1/2, the cost to the taxpayer of continuing 
the project is 1/2 — 6* (in units of 5 bilhon), whereas i f ö > 1/2 i t is zero (since the 
project w i l l be privatised i f profitable). I f 6* > 1/2 the cost of abandoning the project 
is ö — 1/2 (due to contractual arrangements for purchasing the aeroplane f rom the 
French), whereas i f 6* < 1/2 i t is zero. 

Denote the decision to continu the project by di. Denote the decision to abandon the 
project by d^. 

Show that the optimal Bayesian decision is to continue the project i f the posterior mean 
of 9 is greater than 1/2. 

4. I f X - Pois (9) w i t h 9 > 0 (Pl){X = x) = e - ^ ö ^ / s ! ) , then X is a complete sufficient 
statistic (you don't need to prove this). F ind the uniformly min imum variance unbiased 
( U M V U ) estimator for e^^ .̂ 

Recah that = E ^ o f f v 

5. State what is meant by the conditionality principle in statistical inference. 
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