Exam Statistical Inference (WI4455) January 26, 2017, 9.00–12.00

Using books or notes is not allowed at the exam.

Unless stated differently, always add an explanation to your answer.

1. Let X_1, \ldots, X_n be a random sample from the distribution with density

$$f(x \mid \theta) = \frac{2x}{\theta^2} \mathbb{1}_{(0,\theta)}(x)$$
 (*)

with respect to Lebesgue measure.

- (a) Derive an unbiased estimator for θ . Does this estimator respect the likelihood principle?
- (b) Show that $T = \max(X_1, \dots, X_n)$ is a sufficient statistic.
- (c) Show that the density of T if given by $2nt^{2n-1}\theta^{-2n}$ for $0 < t < \theta$.
- (d) Show directly that T is complete.
- (e) Is T minimal sufficient for θ ?
- (f) Now suppose n=1. Assume $X \mid \Theta = \theta$ has density as in (*). Let Θ have a uniform distribution on (0,c), where c a known (fixed) positive number. Find an expression for the posterior density of Θ .
- (g) Compute the posterior mean in the setting of exercise (f).
- 2. Let X be a random variable that takes values in $\{-1,0,1\}$. We want to test

$$H_0: \Pr(X=-1) = \Pr(X=0) = \Pr(X=1) = 1/3$$

versus

$$H_1: \Pr(X=-1) = \Pr(X=1) = 1/4 \qquad \Pr(X=0) = 1/2.$$

In this exercise we will use various ways to decide upon either H_0 or H_1 .

- (a) Show that the uniformly most powerful test of size $\alpha = 1/3$ based on X leads to rejecting the null hypothesis when X = 0.
- (b) Calculate the power of this test.
- (c) We now take a decision theoretic point of view. We assume Θ is a random variable that takes values in $\Omega = \{0, 1\}$ and consider the random variable X that has the following probability mass function, conditional on Θ ,

$$\Pr(X = -1 \mid \Theta = 0) = \Pr(X = 0 \mid \Theta = 0) = \Pr(X = 1 \mid \Theta = 0) = 1/3$$

$$\Pr(X = -1 \mid \Theta = 1) = \Pr(X = 1 \mid \Theta = 1) = 1/4$$
 $\Pr(X = 0 \mid \Theta = 1) = 1/2.$

We wish to find the optimal decision rule $d: \mathcal{X} \to \Omega$, where $\mathcal{X} = \{-1, 0, 1\}$. We consider the loss function $L(\theta, d)$ with L(0, 0) = L(1, 1) = 0, L(1, 0) = 1 and L(0, 1) = 3.

i. There are eight non-randomised decision rules in this problem. These are given in the following table:

0					
	x = -1	x = 0	x = 1	R(0,d)	R(1,d)
$d_1(x)$	0	0	0	0	1
$d_2(x)$	0	0	1,	i	
$d_3(x)$	0	1	0		
$d_4(x)$	0	1	1		
$d_5(x)$	1	0	0		
$d_6(x)$	1	0	1		
$d_7(x)$	1	1	0		
$d_8(x)$	1	1	1		
$d_3(x)$ $d_4(x)$ $d_5(x)$ $d_6(x)$ $d_7(x)$	0 0 1 1 1	1 0 0 1 1	0 1 0 1 0		

Hence d_1 always decides $\theta = 0$ (irrespective the value of x), d_2 decides $\theta = 1$ only if x = 1, etc.

Complete the table.

- ii. Find the minimax rule.
- iii. Find the Bayes rule if a priori $Pr(\Theta = 0) = 2/3$.
- (d) Suppose the prior probability of H_0 equals 2/3 and x=0 is observed. What is the posterior probability of H_0 ?
- 3. At a critical stage in the development of a new aeroplane, a decision must be taken to continue or to abandon the project. The financial viability of the project can be measured by a parameter $\theta \in (0,1)$, the project being profitable if $\theta > 1/2$. Data x provide information about θ . If $\theta < 1/2$, the cost to the taxpayer of continuing the project is $1/2 \theta$ (in units of 5 billion), whereas if $\theta > 1/2$ it is zero (since the project will be privatised if profitable). If $\theta > 1/2$ the cost of abandoning the project is $\theta 1/2$ (due to contractual arrangements for purchasing the aeroplane from the French), whereas if $\theta < 1/2$ it is zero.

Denote the decision to continu the project by d_1 . Denote the decision to abandon the project by d_2 .

Show that the optimal Bayesian decision is to continue the project if the posterior mean of θ is greater than 1/2.

4. If $X \sim Pois(\theta)$ with $\theta > 0$ ($P'_{\theta}(X = x) = e^{-\theta}\theta^x/x!$), then X is a complete sufficient statistic (you don't need to prove this). Find the uniformly minimum variance unbiased (UMVU) estimator for $e^{-3\theta}$.

2

[Recall that $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$.]

5. State what is meant by the conditionality principle in statistical inference.