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Using books or notes is not allowed at the exam.
Unless stated diferently, always add an explanation to your answer.

1. The risks for five decision processes δ1, . . . , δ5 depend on the value of a positive-valued
parameter θ. The risks are given in the table below

δ1 δ2 δ3 δ4 δ5
0 ≤ θ < 1 10 10 7 6 8
1 ≤ θ < 2 8 11 8 5 10

2 ≤ θ 15 11 12 14 14

(a) Which decision procedures are at least as good as δ1 for all θ?

(b) Which decision procedures are admissible?

(c) Which is the minimax procedure?

(d) Suppose θ has a uniform distribution on [0, 5]. Which is the Bayes procedure and
what is the Bayes risk for that procedure?

2. Suppose we have a single observation, X, which comes from a distribution with density
function fθ, with θ ∈ {0, 1} and we want to test

H0 : f(x) = f0(x) = 2(1− x)1[0,1](x)

against
H1 : f(x) = f1(x) = 2x1[0,1](x)

(a) Using Neyman-Pearson, show that the best critical region for the likelihood ratio
test of H0 versus H1 is given by X ≥ B for some constant B.

(b) Consider now choosing B using decision theory. Suppose the losses incurred by a
type II error is four times the loss of a type I error. Consider decision rules dB
which choose H1 if X ≥ B.

i. Write down the loss function when considering the action space is A = {a0, a1}
with a0 = {acceptH0} and a1 = {acceptH1}.

ii. Calculate the risks R(0, dB) and R(1, dB) as functions of B. Use this to find
the value of B which gives the minimax rule.

iii. Calculate the Bayes risk, when the prior probabilities are 1/4 and 3/4 for H0

and H1 respectively, and find the value of B which gives the Bayes rule.

3. Let X1, . . . , Xn be independent and identically distributed random variables, each with
the N(µ, σ2)-distribution, where µ ∈ R is known and σ2 is the unknown parameter.
Consider

T =

∑n
i=1(Xi − X̄)2

n− 1
.
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(a) Compute IT (σ2), which is the Fisher information about σ2 based on T .

Hint: Use that n−1
σ2 T ∼ Ga

(
n−1
2
, 1
2

)
. The density of the Gamma distribution

Ga(α, β) is given by

f(x) =
βα

Γ(α)
xα−1e−βx.

(b) Prove that T is not a sufficient statistic.

Hint: A statistic is sufficient if and only if it preserves the Fisher information.

4. Assume the following hierarchical model:

Xi | θi
ind∼ Pois(θi)

θi | β
ind∼ Exp(β)

π(β) ∼ Exp(2)

Here i = 1, . . . , n.
Derive the Gibbs-sampler for drawing from the posterior of (θ1, . . . , θn, β).

If Y ∼ Pois(θ), then fY (y) = e−θθy/y!, for y = 0, 1, . . .. If Z ∼ Exp(λ), then
fZ(z) = λe−λz1[0,∞).

5. Let θ̂ be an unbiased estimator of an unknown parameter θ ∈ R. Assuming θ 6= 0,
consider the loss function

L(θ, a) =
(a− θ)2

θ2
.

Assume 0 ≤ R(θ, T ) <∞ for any estimator T . Show that θ̂ is not minimax.

Hint: Consider the estimator T = c θ̂ for some particular constant c ∈ (0, 1).

6. Let g be a positive integrable function on (0,∞). Suppose X1, . . . , Xn are independent
random variables with common density f , given by

f(x) =
g(x)∫∞

θ
g(x)dx

1[θ,∞)(x).

(a) Show that X(1) = min{X1, . . . , Xn} is sufficient.

(b) Show that X(1) is minimal sufficient.

7. Suppose

(a) d0 is extended Bayes: for each ε > 0 there exists a prior πε such that

r(πε, d0) ≤ ε+ inf
d
r(πε, d),

(b) R(θ, d0) is constant for all θ.

Then d0 is minimax.
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Answers

1. (a) A decision rule δi (1, 2, 3, 4, 5) is at least as good as δ1 if

R(θ, δi) ≤ R(θ, δ1)

for all i. This holds for δ3 and δ4.

(b) Inadmissible rules are rules that are dominated by another rule.

• δ1 is dominated by δ3 and hence inadmissible.

• δ2 is best when θ ≥ 2 so it cannot be inadmissible.

• δ3 is only dominated by δ4 when 0 ≤ θ < 1, but it is better than δ4 when
θ ≥ 2. Hence it cannot be inadmissible.

• δ4 is best when 0 ≤ θ < 2, so it cannot be inadmissible.

• δ5 is dominated by δ4 and hence inadmissible.

We conclude that δ2, δ3 and δ4 are admissible.

(c) We have

δ1 δ2 δ3 δ4 δ5
maxθ≥0R(θ, δi) 15 11 12 14 14

Hence the minimax rule is given by δ2.

(d) The Bayes risk for δ1 is given by (10 + 8 + 3× 15)/5 = 63/5. Hence we find

δ1 δ2 δ3 δ4 δ5
5 r(π, δi) 63 54 51 53 60

So δ3 is the Bayes rule under this prior (denoted by π).

2. (a) The NP test rejects for large values of

f1(x)

f0(x)
=

x

1− x
.

Now g(x) = x/(1 − x) is increasing on (0, 1) since g′(x) = (1 − x)−2 > 0. Hence
we reject for large values of x.

(b) i. The decision rules we consider are given by

dB(x) =

{
a0 x < B

a1 x ≥ B
.

ii. The loss function is given by

L(θ, a0) =

{
0 θ = 0

4 θ = 1

and

L(θ, a1) =

{
0 θ = 1

1 θ = 0

as the loss of a type II error is four times the loss of a type I error.
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iii. The risk function is given by

R(0, dB) = E0L(0, dB) = P0(dB(X) = a1)

= P0(X ≥ B) =

∫ 1

B

2(1− x)dx = (B − 1)2.

and

R(1, dB) = E1L(1, dB) = 4P1(dB(X) = a0)

= 4P1(X < B) = 4

∫ B

0

2xdx = 4B2.

The minimax rule is determined by R(0, dB) = R(1, dB) which gives the equa-
tion

4B2 = (1−B)2.

This has one solution in [0, 1], which is given by B∗ = 1/3. Hence the minimax
rule is dB∗ .

iv. The Bayes risk is given by

r(π, dB) =
1

4
(B − 1)2 +

3

4
4B2

which is convex. Hence

r(π, dB)

dB
=

1

2
(B − 1) + 6B.

Equating to zero gives B = 1/13.

3. (a) We calculate IT (σ2). Since, T = c Y , where c = σ2/(n− 1) and Y ∼ Ga
(
n−1
2
, 1
2

)
,

using a change of variable we find that fT (x) = c−1fY (x/c). Thus

L(t;σ2) =
n− 1

σ2

(1/2)
n−1
2

Γ
(
n−1
2

) tn−3
2

(
n− 1

σ2

)n−3
2

e−
n−1

2σ2
t

and

logL(t;σ2) = −n− 1

2σ2
t+

n− 1

2
log(n−1)−n− 1

2
log σ2+log

(1/2)
n−1
2

Γ
(
n−1
2

) +
n− 3

2
log t.

Consequently,
d2

d(σ2)2
logL(t;σ2) =

n− 1

2σ4
− (n− 1)t

σ6

and we obtain

IT (σ2) = −n− 1

2σ4
+

1

σ4
(n− 1) =

n− 1

2σ4
.
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(b) Let X = (X1, . . . , Xn). We calculate the Fisher Information IX(σ2). The log-
likelihood function is

logL(x;σ2) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

Hence
d2

d(σ2)2
logL(x;σ2) =

n

2σ4
−
∑n

i=1(xi − µ)2

σ6

and
IX(σ2) =

n

2σ4
.

From IT (σ2) < IX(σ2) we derive that T is not a sufficient statistic.

4. Using Bayesian notation

f(x1, . . . , xn, θ1, . . . , θn, β) =
n∏
i=1

(
e−θi

θxii
xi!
βe−βθi

)
2e−2β.

Hence
f(θi | θ−i, β, x1, . . . , xn) ∝ θxii e

−(1+β)θi ,

which shows that each θi can be simulated conditional on β and xi by drawing from
the Ga(xi + 1, 1 + β)-distribution. For updating β, note that

f(β | θ1, . . . , θn, x1, . . . , xn) ∝ βne−β
∑
θie−2β,

which show that β can be simulated from the Ga(n+ 1, 2 +
∑
θi)-distribution.

5. We consider an estimator T given by T = c θ̂. In this case the risk function is

R(θ, cθ̂) = Eθ

[
(cθ̂ − θ)2

θ2

]
= Eθ

[
(cθ̂ − cθ + cθ − θ)2

θ2

]
= (1− c)2 + c2R(θ, θ̂).

The double product term vanishes since θ̂ is unbiased. We look for a constant c such
that

sup
θ∈R

R(θ, cθ̂) < sup
θ∈R

R(θ, θ̂),

which is equivalent to

sup
θ∈R

R(θ, θ̂) >
(1− c)2

1− c2
=

1− c
1 + c

=: g(c). (1)

Since g : [0, 1] → [0, 1] is continuous and decreasing, (1) holds for all c ∈ (0, 1) if

supθ R(θ, θ̂n) > 1. If supθ R(θ, θ̂n) ≤ 1, then there exists a c∗ such that (1) holds for all
c ≥ c∗.
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6. (a) The joint density is zero unless all xi ≥ θ. This is equivalent to saying that x(1) > θ.
Hence

f(x1, . . . , xn | θ) = 1[θ,∞)(X(1))
n∏
i=1

g(xi)∫∞
θ
g(x)dx

.

Sufficiency follows from the factorisation theorem.

(b) Suppose

f(x1, . . . , xn | θ) = f(y1, . . . , yn | θ)ψ(x1, . . . , xn, y1, . . . , yn).

then the region where the two functions are zero must agree. Hence this implies
x(1) = y(1) from which minimality follows.

7. This is theorem 2.2 from YS.

Suppose R(θ, d0) = C. Suppose d0 is not minimax. Then there exists a rule d′ for
which supθ R(θ, d′) < C. So let supθ R(θ, d′) = C− ε for some ε > 0. As d0 is extended
Bayes, we can find a prior πε such that

r(πε, d0) < inf
d
r(πε, d) + ε/2 ≤ r(πε, d

′) + ε/2 ≤ C − ε+ ε/2 = C − ε/2.

Now since d0 is an equaliser rule r(πε, d0) = C and we have reached a contradiction.
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