

Five exercises. They all have equal payoff.

- 1 Consider a sequence of independent random variables X_n for n = 1, 2, ... taking the values zero or one, with $P(X_n = 1) = a_n$.
 - A Prove that $X_n \to 0$ in probability if and only if $a_n \to 0$.
 - B Prove that $X_n \to 0$ almost surely if and only if $\sum a_n < \infty$.
 - C Under what conditions on a_n does X_n converge to zero in the mean?
- 2 Let Y be an integrable random variable which takes the integer values $0, 1, 2, \ldots$ and $\mathbf{E}[Y] = m > 0$. Let $Y_{i,j}$ be a set of independent random variables which are all distributed as Y. The indices i, j both run through $0, 1, 2, \ldots$ The filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ consists of \mathcal{F}_n which are generated by $Y_{i,j}$ with $i \leq n$.

Define $X_0 = 1$ and by induction

$$X_{n+1} = \sum_{k=1}^{X_n} Y_{n,k}$$

- A Prove that $M_n = X_n/m^n$ is a martingale.
- B Prove that M_n converges almost surely.
- C Prove that $X_n \to 0$ almost surely if m < 1.
- 3 Let M_n be a non-negative submartingale and let $\lambda > 0$. Define $\tau = \min\{k: M_k \ge \lambda\}$.
 - A. Prove that τ is a stopping time.
 - B. Prove that $\lambda \leq \mathbb{E}[M_n \mid \{\tau \leq n\}].$
 - C. Prove Doob's maximal inequality

$$\mathbf{P}(M_n^* \ge \lambda) \le \frac{1}{\lambda} \mathbf{E}[M_n]$$

- 4 Let W_t be the standard Brownian Motion and let \mathcal{F}_t be the natural filtration.
 - A Prove that $V_t = \frac{1}{\sqrt{c}} W_{ct}$ is the standard Brownian Motion for any c > 0.
 - B Prove that $W_t^2 t$ is a martingale.
 - C Define $\tau = \inf\{t: W_t \ge 2 \text{ or } W_t \le -2\}$. Assuming that this is an integrable stopping time (no need to verify this), compute $\mathbf{E}[\tau]$.
- 5 Again W_t is the standard Brownian Motion.
 - A W_t^4 is an Itô process and so $dW_t^4 = a(t, W_t)dt + b(t, W_t)dW_t$. Determine $a(t, W_t)$ and $b(t, W_t)$ for this process.
 - B Compute $\mathbf{E} [W_T^4]$ by using that

$$\mathbf{E}[W_T^4] = \mathbf{E}\left[\int_0^T dW_t^4\right] = \mathbf{E}\left[\int_0^T a(t, W_t) dt\right] + \mathbf{E}\left[\int_0^T b(t, W_t) dW_t\right]$$

That is it. Check your answers once more and hand in your form.