

Five exercises. They all have equal payoff.

- 1 Let M_n be a non-negative martingale which starts at $M_0 = 1$ for $n = 0, 1, 2, \ldots$
 - A Does M_n converge in the mean? If it does, then state the appropriate theorem and show that the conditions of the theorem are satisfied. If it does not, then produce a counterexample.
 - \nearrow B Does M_n converge almost surely? If it does, then state the appropriate theorem and show that the conditions of the theorem are satisfied. If it does not, then produce a counterexample.
- **2** Consider the simple random walk $S_n = X_1 + \cdots + X_n$ for i.i.d. random variables X_i which are equiprobably +1 or -1. As usual, \mathcal{F}_n is the σ -algebra generated by X_1, \dots, X_n . The random walk starts at $S_0 = 0$.
 - \mathcal{A} Compute $\mathbb{E}[S_n^4 \mid \mathcal{F}_{n-1}]$. Conclude that S_n^4 is a submartingale.
 - B According to Doob's decomposition $S_n^4 = M_n + A_n$ for a martingale M_n and a predictable process A_n which both start at zero. Determine M_n and A_n for n = 1, 2, 3.
 - $\mathcal{L}^{\mathbb{C}}$ Define $\tau = \inf\{n: S_n < \frac{n}{2}\}$. Prove that τ is a finite stopping time.
- 3 Let X_1, X_2, \ldots be independent random variables such that

$$X_n = \left\{ \begin{array}{ll} n^2 - 1 & \text{with probability } n^{-2} \\ -1 & \text{with probability } 1 - n^{-2} \end{array} \right.$$

Define $M_n = X_1 + \cdots + X_n$ and let \mathcal{F}_n be the usual filtration. The process starts at $M_1 = 0$ since $X_1 = 0$.

- \mathcal{A} A. Verify that M_n is a martingale.
 - B. Verify that $M_n \to -\infty$ almost surely.
- SC. Define $\tau = \inf\{n > 1: X_n \neq -1\}$. Verify that $M_{\tau} > 0$ if $\tau < \infty$. Why does this not contradict Doob's optional sampling theorem?

- 4 Let W_t be the standard Brownian Motion and let \mathcal{F}_t be the natural filtration. Recall that $\mathbb{E}[Z^4] = 3$ and that $\mathbb{E}[e^{\lambda Z}] = e^{\lambda^2/2}$ if Z is a standard normal random variable.
 - A. Compute $\mathbb{E}[(W_s^2 s)(W_t^2 t)]$ for 0 < s < t. B. Compute $\mathbb{E}[e^{W_t} \mid \mathcal{F}_s]$ for 0 < s < t.

 - \bigcirc C. Define $V_t = tW_{1/t}$ for t > 0. Verify that the increments $V_t V_s$ for 0 < s < t are normally distributed with mean zero and variance t-s.
- 5 Again W_t is the standard Brownian Motion.
 - A. Compute the differential of the Itô process $X_t = W_t^3 3tW_t$. Conclude that it is a continuous martingale.
 - B. Use the Itô isometry to compute the variance of X_t .
 - C. Solve the following SDE:

$$dY_t = -Y_t dW_t$$

That is it. Check your answers once more and hand in your form.