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This is the solution on EVT part.

1. Let F−1 denote the quantile function of X. Then we have

X = F−1(V ).

Hence F−1(v) =
1
v

log 1
v

.

None of you was able to see this. This is called probability integral transform. You might not know
this name. But you should know that every continuous random variable can be linked to a uniform
random variable via its quantile function. One learns this in the first year of probability course.

Define U the tail quantile function of X. Then U(t) = F−1(1− 1
t ) =

1

1− 1
t

log 1

1− 1
t

, for t ≥ 1. For x > 0,

lim
t→∞

U(tx)

U(t)
= lim

t→∞

1
1− 1

tx

log 1
1− 1

tx

/

1
1− 1

t

log 1
1− 1

t

= lim
t→∞

log 1
1− 1

t

log 1
1− 1

tx

= lim
t→∞

log(1− 1
t )

log(1− 1
tx )

= x.

As long as you state the max domain condition (on F or on U) , you get two points.

2. During the exam, you were given bn = log n and an = 1.

•

lim
n→∞

Pr

(
En,n − bn

an
≤ x

)
= lim

n→∞
Fn(anx+ bn) = (1− e−(logn+x))n

= lim
n→∞

(1− ne−x)n = e−e
−x

The last equality follows from that limn→∞(1 − x/n)n = e−x. Some of you did it differently,
which is also ok.

• This is a cleaned and simplified version of exercise 3.4 in the book, which is one of your
homework. From the first question, we see that

En,n − log n
d→ G0, as n→∞.

Note that logXi =d γEi This you also saw in the proof on the consistency of Hill estimator..
Hence

logXn,n − logXn−k,n

log k
=d γ

En,n − En−k,n

log k
=d γ

E∗k,k
log k

.

From the first question we know that (since k →∞)

E∗k,k − log k
d→ G0,

which implies that
E∗k,k
log k

p→ 1.

This concludes the proof.

3. This one we did in the class more than once.



• First note that x∗ = U(∞). Now (1) can be written as

lim
t→∞

Pr(X > a(t)x+ U(t))

Pr(X > U(t))
= (1 + γx)−

1
γ .

For x > 0, this is equivalent to

lim
t→∞

Pr

(
X1 − U(t)

a(t)
> x|X1 > U(t)

)
= (1 + γx)−

1
γ .

Now write U(t) = s. Then limt→∞ U(t) = x∗ and

lim
s→x∗

Pr

(
X1 − s

a(U inv(s))
> x|X1 > s

)
= (1 + γx)−

1
γ .

The proof is finished by letting f(s) = a(U inv(s)).

• The approximation is done by taking s = U(1/p) in the conditional probability. Since we need
s → x∗, p has to tend to zero. Or in other words, since s has to be close to the endpoint, p
has to be close to zero.

• I expect to see moment method (for γ ∈ R) or MLE method (for γ > −1), that we discussed in
the lecture. You don’t get punished if you forget to specify the boundary condition on MLE.

4. • For positive x,

G(x,∞) = lim
n→∞

Fn(U1(nx), U2(∞)) = lim
n→∞

(P (X1 ≤ U1(nx)))n = lim
n→∞

(1− 1/nx)n = e−
1
x .

(1)

• we did in the class
For any (x, y) for which 0 < G(x, y) < 1,

lim
n→∞

n logF (U1(nx), U2(ny)) = logG(x, y). (2)

lim
n→∞

n log(1 + F (U1(nx), U2(ny))− 1) = logG(x, y). (3)

lim
n→∞

n(F (U1(nx), U2(ny))− 1)) = logG(x, y). (4)

• When we discussed the properties of L function, i showed the proof for the homogeneity and
asked you to prove the bounds yourself.
By definition

L(x, y) = lim
n→∞

n(1− F (U1(n/x), U2(n/y))) = lim
n→∞

nPr(X1 > U1(n/x) or X2 > U2(n/y)).

Hence L(x, y) ≤ limn→∞ n (Pr(X1 > U1(n/x)) + Pr(X2 > U2(n/y))) = x+ y.
Obviously, L(x, y) ≥ limn→∞ nPr(X1 > U1(n/x)) = x.
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