

Exam part 1 Real Analysis (TW2090) 6-11-2017; 13.30-15.30 Teacher M.C. Veraar, co-teacher K.P. Hart.

- 1. Let (M,d) and (N,ρ) be metric spaces and let $f:M\to N$ be a function.
- (5) a. Complete the following definition: f is continuous in $x \in M$ if
- (10) b. Assume that f is continuous in $x \in M$. Let (x_n) be a sequence in M with $x_n \stackrel{d}{\to} x$. Show that $f(x_n) \stackrel{\rho}{\to} f(x)$.
- (5) 2. a. Let (M,d) be a metric space. Complete the following definition: a subset $A\subseteq M$ is called *totally bounded* if ...
- (10) b. Give an example of a metric space (M, d) and a bounded subset $A \subseteq M$ which is not totally bounded. As always: prove all your assertions.
 - 3. Let (M, d) be a metric space.
- (5) a. Give the definition of the closure \overline{A} of a set $A \subseteq M$.
- (10) b. Using only the definition of the closure, prove the following equivalence for a set $A \subseteq M$: $\overline{A} = M \iff$ for all $x \in M$ and for all $\varepsilon > 0$ there exists a $y \in A$ such that $d(x,y) < \varepsilon$.

For a set $A \subseteq M$ and $\varepsilon > 0$ we define

$$A(\varepsilon) = \{x \in M : \exists y \in A \text{ such that } d(x, y) < \varepsilon\}.$$

- (5) c. Show that $A(\varepsilon)$ is open.
 - Let (A_n) be a sequence of subsets of M such that for all $n \ge 1$ one has $A_n \subseteq A_{n+1}$ and $\overline{\bigcup_{n \ge 1} A_n} = M$.
- (6) d. Use (b) to show that for each $\varepsilon > 0$ one has $M = \bigcup_{n \ge 1} A_n(\varepsilon)$.
- (6) e. From now on assume that M is compact. Show that for every $\varepsilon > 0$ there exists an $n \ge 1$ such that $M = A_n(\varepsilon)$.
 - 4. Let X be a nonempty set and let B(X) be the vector space of bounded functions $f: X \to \mathbb{R}$. On B(X) we define $||f||_{\infty} = \sup_{x \in X} |f(x)|$.
- (6) a. Show that $\|\cdot\|_{\infty}$ is a norm on B(X).
- (12) b. Prove that $(B(X), \|\cdot\|_{\infty})$ is complete.
- (10) 5. Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that for every integer $n\geq 0$,

$$\int_0^1 f(x)x^n dx = 0.$$

Show that f = 0.

Hint: First explain why for all polynomials p one has $\int_0^1 f(x)p(x)dx = 0$ and then use Weierstrass' theorem to find that $\int_0^1 (f(x))^2 dx = 0$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$Grade = \frac{Total + 10}{10}$$

and rounded in the standard way.