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1. Let (M,d) and (N, ρ) be metric spaces and let f : M → N be a function.

(5) a. Complete the following definition: f is continuous in x ∈M if ....

(10) b. Assume that f is continuous in x ∈ M . Let (xn) be a sequence in M with xn
d→ x. Show that

f(xn)
ρ→ f(x).

2.(5) a. Let (M,d) be a metric space. Complete the following definition: a subset A ⊆ M is called totally
bounded if ...

(10) b. Give an example of a metric space (M,d) and a bounded subset A ⊆M which is not totally bounded.
As always: prove all your assertions.

3. Let (M,d) be a metric space.

(5) a. Give the definition of the closure A of a set A ⊆M .

(10) b. Using only the definition of the closure, prove the following equivalence for a set A ⊆M :
A = M ⇐⇒ for all x ∈M and for all ε > 0 there exists a y ∈ A such that d(x, y) < ε.

For a set A ⊆M and ε > 0 we define

A(ε) = {x ∈M : ∃y ∈ A such that d(x, y) < ε}.

(5) c. Show that A(ε) is open.

Let (An) be a sequence of subsets of M such that for all n ≥ 1 one has An ⊆ An+1 and
⋃
n≥1

An = M .

(6) d. Use (b) to show that for each ε > 0 one has M =
⋃
n≥1

An(ε).

(6) e. From now on assume that M is compact. Show that for every ε > 0 there exists an n ≥ 1 such that
M = An(ε).

4. Let X be a nonempty set and let B(X) be the vector space of bounded functions f : X → R. On B(X)
we define ‖f‖∞ = sup

x∈X
|f(x)|.

(6) a. Show that ‖ · ‖∞ is a norm on B(X).

(12) b. Prove that (B(X), ‖ · ‖∞) is complete.

5.(10) Let f : [0, 1]→ R be a continuous function such that for every integer n ≥ 0,∫ 1

0

f(x)xndx = 0.

Show that f = 0.

Hint: First explain why for all polynomials p one has
∫ 1

0
f(x)p(x)dx = 0 and then use Weierstrass’

theorem to find that
∫ 1

0
(f(x))2dx = 0.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following
formula

Grade =
Total + 10

10
and rounded in the standard way.

THE END
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1. a. for all ε > 0 there exists a δ > 0 such that for all y ∈M : d(x, y) < δ implies ρ(f(x), f(y)) < ε.

b. Let ε > 0. Since f is continuous we can find δ > 0 such that for all y ∈M : d(x, y) < δ implies ρ(f(x), f(y)) < ε.
Since xn → x, we can find N ∈ N such that for all n ≥ N , d(x, xn) < δ. It follows that ρ(f(x), f(xn)) < ε.

2. a. ... for all ε > 0 there exist x1, . . . , xn ∈M such that A ⊆
⋃n
i=1Bε(xi).

b. Let M = R with the discrete metric. Then B2(0) = R thus R is bounded. However, letting ε = 1, we find
that for every x ∈ R we have B1(x) = {x}. Thus for any choice x1, . . . , xn ∈ R,

⋃n
i=1Bε(xi) = {x1, . . . , xn}

is not equal to R. This shows that R with the discrete metric is bounded but not totally bounded.

3. a. This is the smallest closed set inM which containsA. In other words: A =
⋂
{F ⊆M : A ⊆ F and F is closed}.

b. ⇐ using contraposition. Assume A 6= M . We will show that there exist x ∈ M and ε > 0 such that for all
y ∈ A, d(x, y) ≥ ε. Choose x ∈M \A. Since A is closed we have that M \A is open. Thus we can ε > 0 such
that Bε(x) ⊆M \A. Then we find A ⊆ A ⊆M \Bε(x). Thus for every y ∈ A, d(x, y) ≥ ε.

⇒. Assume that for all x ∈ M and for all ε > 0 there exists a y ∈ A such that d(x, y) < ε. We will show
that A = M . For this choose x ∈ M arbitrary and let F ⊆ M be a closed set such that A ⊆ F . It suffices to
show that x ∈ F . If x ∈ M \ F , then since M \ F is open we can find an ε > 0 such that Bε(x) ⊆ M \ F .
Therefore, Bε(x) ∩ A ⊆ Bε(x) ∩ F = ∅. However, from the assumption we know that there exists a y ∈ A such
that d(x, y) < ε. Thus y ∈ Bε(x)∩A and hence the latter is nonempty. This contradiction implies that we must
have x ∈ F .

c. Let x ∈ Aε. We need to find a δ > 0 such that Bδ(x) ⊆ Aε. Choose y ∈ A such that d(x, y) < ε. Let
δ = ε− d(x, y). Then δ > 0 and for all z ∈ Bδ(x) we have by the triangle inequality,

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + δ = ε.

d. Fix ε > 0. Choose x ∈M arbitrary. Let y ∈
⋃
n≥1An be such that d(x, y) < ε. Then we can find n ∈ N such

that y ∈ An. Thus y ∈ An(ε). Therefore, we can conclude x ∈
⋃
n≥1

An(ε).

e. By d and c we now that (An(ε)n≥1 is an open cover of M . The compactness of M now implies that it has a
finite subcover. Therefore, there exists a finite set F ⊆ N such that M ⊆

⋃
n∈F An(ε). Since An ⊆ An+1 we

also have An(ε) ⊆ An+1(ε). Taking N = maxF , we find that
⋃
n∈F An(ε) = AN (ε). We can now conclude

that M = AN (ε).

4. a. Let f ∈ B(X). Since f is bounded we know that for every x ∈ X, 0 ≤ |f(x)| ≤ M . Therefore, ‖f‖∞ =
supx∈X |f(x)| is a number in [0,∞). We check the remaining properties of a norm. If f = 0, then clearly,
‖f‖∞ = 0. Conversely, if ‖f‖∞ = 0, then supx∈X |f(x)| = 0, thus |f(x)| = 0 for all x ∈ X, thus f(x) = 0 for
all x ∈ X. If λ ∈ R, then

‖λf‖∞ = sup
x∈X
|λf(x)| = sup

x∈X
|λ| |f(x)| = |λ| sup

x∈X
|f(x)| = |λ| ‖f‖∞.

where the numbers |λ| can be pulled out of the supremum since it is in [0,∞). Finally, if f, g ∈ B(X), then
for all x ∈ X,

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞.
Therefore, ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

b. Finally, we prove the completeness of B(X). Let (fn)n≥1 be a Cauchy sequence in B(X).
(i): We claim that for all x ∈ X, (fn(x))n≥1 is a Cauchy sequence in R. Indeed, let ε > 0. Choose N ∈ N such
that for all m,n ≥ N , ‖fn − fm‖∞ < ε. Then for all x ∈ X, for all m,n ≥ N ,

|fm(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε (∗)

which proves the claim. By the completeness of R we can define f : X → R as f(x) = limn→∞ fn(x).
(ii): Since (fn)n≥1 is a Cauchy sequence in B(X) it is bounded in B(X). Choose M such that for all n ≥ 1,
‖fn‖∞ ≤M . Then for all x ∈ X, |fn(x)| ≤M . Therefore, letting n→∞, we find that for all x ∈ X, |f(x)| ≤M .
Thus f ∈ B(X).
(iii): It remains to show that fn → f in B(X). Let ε > 0. Choose N as in step (i). Letting m → ∞ in (∗) we
obtain that for all n ≥ N , for all x ∈ X,

|f(x)− fn(x)| ≤ ε.
Therefore, for all n ≥ N , ‖f − fn‖∞ ≤ ε.

See also the next page.
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5. Let p(x) =
∑M
m=0 amx

m be a polynomial. Then by linearity of the integral we can write∫ 1

0

f(x)p(x)dx =

M∑
m=0

am

∫ 1

0

f(x)xmdx = 0.

By Weierstras’ theorem we can find polynomials (pj)j≥1 such that pj → f uniformly on [0, 1]. Therefore, by the
above observation and the standard properties of integrals, we have∫ 1

0

(f(x))2dx =
∣∣∣ ∫ 1

0

(f(x))2dx−
∫ 1

0

f(x)pj(x)dx
∣∣∣

=
∣∣∣ ∫ 1

0

(f(x))2 − f(x)pj(x)dx
∣∣∣

≤
∫ 1

0

|(f(x))2 − f(x)pj(x)|dx

=

∫ 1

0

|f(x)| |f(x)− pj(x)|dx

≤ ‖f‖∞‖f − pj‖∞.

Since the right-hand side tends to zero as j →∞, we must have
∫ 1

0
(f(x))2dx = 0. Since f is continuous it follows

that f = 0.

THE END


