$\begin{array}{c} {\rm TU~Delft} \\ {\rm Calculus~TI1106M-Final~test} \\ {\rm Monday~30\text{-}01\text{-}2017,~9:00-11:00} \end{array}$

NAME: STUDENT ID: Remarks: • Formula sheet is allowed, calculators are not. • In every problem, results from earlier problems can be used. Short answer problems Fill in anwers on sheet 1. Let $z = \frac{2i}{4 - i}$. 4pt Rewrite z in the form a + bi with a and b real. 2. Consider the following sequence: $a_n = \frac{3n-1}{\sqrt{2+n^2}}$ for $n \ge 1$ and integer. a. Indicate whether it is increasing, decreasing or neither. 2pt b. Find, if possible, $\lim_{n\to\infty} a_n$. In case of divergence, write DIV. 2pt3. Given vectors $\mathbf{v} = \langle 2, -3, -1 \rangle$ and $\mathbf{w} = \langle 2, h, 2 \rangle$. 4pt Find h such that \mathbf{v} and \mathbf{w} are orthogonal. 4. Let function f be given by $f(x,y) = \sqrt{x^2 + xy}$, and point P = (2,6). a. Find $\nabla f(P)$. 2pt b. Find the directional derivative of f at P in the direction 2pt $\mathbf{v} = \langle 1, -2 \rangle.$

c. Use a linearization to approximate f(2.04, 5.96)

2pt

Open problems

Provide calculations and argumentation!

- 1. Consider the power series $\sum_{n=1}^{\infty} \frac{1}{n^3 \, 3^{n+1}} (2x-5)^n.$
- 6pt a. Show that the radius of convergence is $\frac{3}{2}$ and the center of convergence is $\frac{5}{2}$.
- 5pt b. Find the interval of convergence.
- 4pt 2. a. Write the complex number $-\frac{1}{3} \frac{i}{\sqrt{3}}$ in polar form.
- b. Find all solutions to the equation $z^2 = -\frac{1}{3} \frac{\mathrm{i}}{\sqrt{3}}$. Provide your answers in the form $a + \mathrm{i}b$ with a and b in \mathbb{R} .
- 4pt 3. a. In class it was shown that $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ for all $x \in \mathbb{R}$. Use this to show that (for $x \ge 0$):

$$\int x^2 \cos(\sqrt{x}) \, dx = C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+3}}{(n+3)(2n)!} = C + \frac{1}{3}x^3 - \frac{1}{4 \cdot 2!}x^4 + \frac{1}{5 \cdot 4!}x^5 - \frac{1}{6 \cdot 6!}x^6 + \dots,$$

where C is an arbitrary constant.

- b. Use a. to approximate the integral $\int_0^1 x^2 \cos(\sqrt{x}) dx$ with an error ≤ 0.01 . Motivate your answer!
 - 4. Let f be a function of 2 variables given by $f(x,y) = y^3 x^2 + \ln(y^3x)$. Let D be the maximal domain of f.
- a. Describe D and make a sketch. Clearly indicate or describe which points are part of D and which are not. Explain your answer.
- 4pt b. Show that $P = \left(-\sqrt{\frac{1}{2}}, -1\right)$ is a critical point of f.
- 6pt c. Explain whether f has a local maximum, local minimum or neither at P.
- $5\mathrm{pt}$ d. Does f have any other critical points? Explain!
 - 5. Consider the following iterated integral: $\int_{y=1}^{2} \int_{x=0}^{\sqrt{y}} f(x,y) dx dy.$ Let D be the domain of integration.
- 2pt a. Sketch D.
- 6pt b. To reverse the order of integration, the integral has to be split:

$$\iint_D f(x,y) dA = \int_{\cdots}^{\cdots} \int_{\cdots}^{\cdots} f(x,y) \, dy \, dx + \int_{\cdots}^{\cdots} \int_{\cdots}^{\cdots} f(x,y) \, dy \, dx.$$

Give the limits for both integrals.

6pt c. Evaluate $\iint_D y^{3/2} \cos(x\sqrt{y}) dA$. Use the order of integration that you think is most suitable.

$$Grade = 1 + \frac{score}{9}$$