NAME: STUDENT ID:

Remarks:

- Formula sheet is allowed, calculators are not.
- In every problem, results from earlier problems can be used.

Short answer problems

Fill in anwers on sheet

4pt 1. Let $z = \frac{2i}{4-i}$.

Rewrite z in the form a + bi with a and b real.

Solution:

Multiply numerator and denominator by 4 + i and simplify:

$$\frac{2i}{4-i} = \frac{2i \cdot (4+i)}{(4-i)(4+i)} = \frac{-2+8i}{17} = \frac{-2}{17} + \frac{8}{17}i.$$

2. Consider the following sequence: $a_n = \frac{3n-1}{\sqrt{2+n^2}}$ for $n \ge 1$ and integer.

2pt a. Indicate whether it is increasing, decreasing or neither.

Solution:

Note that $a_n = f(n)$ where $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{3x-1}{\sqrt{2+x^2}}$. We have:

$$f'(x) = \frac{3\sqrt{2+x^2} - (3x-1)\frac{x}{\sqrt{2+x^2}}}{2+x^2} = \frac{6+x}{(2+x^2)^{\frac{3}{2}}}.$$

This is positive for x > -6. It follows that the sequence is increasing.

2pt b. Find, if possible, $\lim_{n\to\infty} a_n$. In case of divergence, write DIV.

Solution:

The limit can be evaluated by division by the highest power (do not try l'Hospital!).:

$$\lim_{n \to \infty} \frac{3n-1}{\sqrt{2+n^2}} = \lim_{n \to \infty} \frac{3-\frac{1}{n}}{\sqrt{\frac{2}{n^2}+1}} = 3.$$

In the second step we used that $n = \sqrt{n^2}$, which is true since n > 0.

4pt 3. Given vectors $\mathbf{v} = \langle 2, -3, -1 \rangle$ and $\mathbf{w} = \langle 2, h, 2 \rangle$. Find h such that \mathbf{v} and \mathbf{w} are orthogonal.

Solution:

Vectors are orthogonal precisely if the dot product is 0. We find:

$$\mathbf{v} \cdot \mathbf{w} = 4 - 3h - 2 = 2 - 3h$$
,

which vanishes for $h = \frac{2}{3}$. So **v** and **w** are orthogonal precisely for $h = \frac{2}{3}$.

4. Let function f be given by $f(x,y) = \sqrt{x^2 + xy}$, and point P = (2,6).

2pt a. Find $\nabla f(P)$.

Solution:

Find the partial derivatives:

$$f_x(x,y) = \frac{2x+y}{2\sqrt{x^2+xy}}$$
$$f_y(x,y) = \frac{x}{2\sqrt{x^2+xy}}$$

Evaluate at P:

$$\nabla f(P) = \left\langle \frac{10}{8}, \frac{2}{8} \right\rangle = \left\langle \frac{5}{4}, \frac{1}{4} \right\rangle.$$

 $_{\rm 2pt}$ b. Find the directional derivative of f at P in the direction ${\bf v}=\langle 1,-2\rangle.$

Solution:

Let
$$\mathbf{u} = \frac{1}{|\mathbf{v}|} \mathbf{v} = \frac{1}{\sqrt{5}} \langle 1, -2 \rangle$$
.

The directional derivative is given by:

$$D_{\mathbf{u}}f(P) = \nabla f(P) \cdot \mathbf{u} = \frac{3}{4\sqrt{5}}.$$

2pt c. Use a linearization to approximate f(2.04, 5.96)

Solution:

The linearization at P is given by:

$$L(x,y) = f(P) + f_x(P)(x-2) + f_y(P)(y-6) = 4 + \frac{5}{4}(x-2) + \frac{1}{4}(y-6).$$

We have:

$$f(2.04, 5.98) \approx L(2.04, 5.98) = 4 + \frac{5}{4}(0.04) + \frac{1}{4}(-0.04) = 4.04.$$

Open problems

Provide calculations and argumentation!

1. Consider the power series $\sum_{n=1}^{\infty} \frac{1}{n^3 3^{n+1}} (2x-5)^n$.

a. Show that the radius of convergence is $\frac{3}{2}$ and the center of convergence is $\frac{5}{2}$. 6pt

Solution:

We use the ratio test to investigate convergence:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{n^3}{(n+1)^3} \frac{1}{3} |2x - 5| \to \frac{1}{3} |2x - 5|$$

as $n \to \infty$.

It follows that the interval of convergence excluding the boundary points is given by all

x such that $-1 < \frac{1}{3}(2x-5) < 1$, or equivalently: 1 < x < 4. The center of this interval is $(1+4)/2 = \frac{5}{2}$, the radius of convergence, i.e. the distance from center to boundary, is given by $(4-1)/2 = \frac{3}{2}$.

b. Find the interval of convergence.

Solution:

5pt

We only have to investigate the boundary points.

At x = 1 we have the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{3n^3}$, at x = 4 we have the series $\sum_{n=1}^{\infty} \frac{1}{3n^3}$.

Both have $\sum_{n=0}^{\infty} \frac{1}{3n^3}$ as corresponding absolute series. This series is convergent, since it

is a p-series with p = 1 > 1. It follows that the power series is absolutely convergent, and hence convergent, at both boundary points of the interval.

The interval of convergence is [1, 4].

4pt 2. a. Write the complex number $-\frac{1}{3} - \frac{i}{\sqrt{3}}$ in polar form.

Solution:

$$-\frac{1}{3} - \frac{i}{\sqrt{3}} = r(\cos(\theta) + i\sin(\theta)), \text{ where}$$

$$r = \sqrt{\frac{1}{9} + \frac{1}{3}} = \sqrt{\frac{4}{9}} = \frac{2}{3},$$

 $\theta = \arctan(\sqrt{3}) + k\pi = \frac{1}{3}\pi + k\pi.$

Since the complex number lies in the second quadrant, the argument is $\theta = \frac{4}{3}\pi$.

b. Find all solutions to the equation $z^2 = -\frac{1}{3} - \frac{1}{\sqrt{3}}$ 5pt

Provide your answers in the form a + ib with a and b in \mathbb{R} .

Solution:

Write $z = r(\cos(\theta) + i\sin(\theta))$, then $z^2 = r^2(\cos(2\theta) + i\sin(2\theta))$. The equation comes down to:

$$r^2 = \frac{2}{3}$$
$$2\theta = \frac{4}{3}\pi + 2k\pi.$$

It follows that $r = \sqrt{\frac{2}{3}}$ and $\theta = \frac{2}{3}\pi$ or $\theta = \frac{5}{3}\pi$. The solutions we get are:

$$z = \pm \sqrt{\frac{2}{3}}(-\frac{1}{2} + \frac{1}{2}\sqrt{3}i) = \pm(-\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}i).$$

4pt 3. a. In class it was shown that $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ for all $x \in \mathbb{R}$.

Use this to show that (for $x \geq 0$):

$$\int x^2 \cos(\sqrt{x}) \, dx = C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+3}}{(n+3)(2n)!} = C + \frac{1}{3}x^3 - \frac{1}{4 \cdot 2!}x^4 + \frac{1}{5 \cdot 4!}x^5 - \frac{1}{6 \cdot 6!}x^6 + \dots,$$

where C is an arbitrary constant.

Solution:

We have

$$\cos(y) = \sum_{n=0}^{\infty} (-1)^n \frac{y^{2n}}{(2n)!} = 1 - \frac{1}{2!}y^2 + \frac{1}{4!}y^4 - \frac{1}{6!}y^6 - \dots \text{ for all } y \in \mathbb{R}.$$

Substitute $y = \sqrt{x}$ and multiply by x^2 . This gives:

$$x^{2}\cos(\sqrt{x}) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2+n}}{(2n)!} = x^{2} - \frac{1}{2!}x^{3} + \frac{1}{4!}x^{4} - \frac{1}{6!}x^{6} + \dots \text{ for all } x \ge 0.$$

Integrate termwise:

$$\int x^2 \cos(\sqrt{x}) \, dx = C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{3+n}}{(3+n)(2n)!} = C + \frac{1}{3}x^3 - \frac{1}{4 \cdot 2!}x^4 + \frac{1}{5 \cdot 4!}x^5 - \frac{1}{6 \cdot 6!}x^6 + \dots$$

6pt b. Use a. to approximate the integral $\int_0^1 x^2 \cos(\sqrt{x}) dx$ with an error ≤ 0.01 .

Motivate your answer!

Solution:

We can use the result from a. to evaluate the integral in terms of a series:

$$\int_0^1 x^2 \cos(\sqrt{x}) \, dx = \left[\sum_{n=0}^\infty (-1)^2 \frac{x^{3+n}}{(3+n)(2n)!} \right]_0^1$$
$$= \sum_{n=0}^\infty (-1)^2 \frac{1}{(3+n)(2n)!}$$
$$= \frac{1}{3} - \frac{1}{2! \cdot 4} + \frac{1}{5 \cdot 4!} - \frac{1}{6 \cdot 6!} + \dots$$

The series is alternating, convergent, and $|a_{n+1}| < |a_n|$ for all terms. Therefore, for each partial sum s_k , we have that $|s - s_k| \le |a_{k+1}|$, where s is the sum of the series. Note that the third term equals $\frac{1}{5\cdot 4!} = \frac{1}{120}$, so we can get an approximation with error ≤ 0.01 by using only the first 2 terms:

$$\int_0^1 x^2 \cos(\sqrt{x}) \, dx \approx \frac{1}{3} - \frac{1}{8} = \frac{5}{24}.$$

- 4. Let f be a function of 2 variables given by $f(x,y) = y^3 x^2 + \ln(y^3x)$. Let D be the maximal domain of f.
- a. Describe D and make a sketch. Clearly indicate or describe which points are part of D and which are not. Explain your answer.

Solution:

First quadrant and third quadrant, coordinate axes are *not* part of the domain.

Solution:

Find the partial derivatives of f:

$$f_x(x,y) = -2x + \frac{1}{x}$$

 $f_y(x,y) = 3y^2 + \frac{3}{y}$

It is easy to check that both vanish at P. Therefore, P is a critical point of f.

 $_{\text{6pt}}$ c. Explain whether f has a local maximum, local minimum or neither at P.

Solution:

To determine the type we need to find the Hessian (in Stewart section 14.7 denoted by D). For the Hessian, we need the second order partial derivatives:

$$f_{xx}(x,y) = -2 - \frac{1}{x^2}$$
$$f_{yy}(x,y) = 6y - \frac{3}{y^2}$$
$$f_{xy}(x,y) = 0$$

The Hessian at P is:

$$H(P) = f_{xx}(P) f_{yy}(P) - (f_{xy}(P))^2 = -4 \cdot -9 - 0^2 = 36.$$

This is larger than 0. Furthermore, $f_{xx}(P) < 0$. It follows that f attains a local maximum at P.

d. Does f have any other critical points? Explain!

Solution:

5pt

We need to solve the system:

$$\begin{cases} f_x(x,y) = -2x + \frac{1}{x} = 0\\ f_y(x,y) = 3y^2 + \frac{3}{y} = 0 \end{cases}$$

The first equation gives $x = \pm \sqrt{\frac{1}{2}}$, the second gives y = -1. We find two candidate points: point P and the point $(\sqrt{\frac{1}{2}}, -1)$. However, the latter point does not lie in the maximal domain of f. Therefore, f has P as its only critical point.

- 5. Consider the following iterated integral: $\int_{y=1}^{2} \int_{x=0}^{\sqrt{y}} f(x,y) dx dy.$ Let D be the domain of integration.
- 2pt a. Sketch D.
- 6pt b. To reverse the order of integration, the integral has to be split:

$$\iint_D f(x,y)dA = \int_{\dots}^{\dots} \int_{\dots}^{\dots} f(x,y) \, dy \, dx + \int_{\dots}^{\dots} \int_{\dots}^{\dots} f(x,y) \, dy \, dx.$$

Give the limits for both integrals.

Solution:

$$\iint_D f(x,y)dA = \int_0^1 \int_1^2 f(x,y) \, dy \, dx + \int_1^{\sqrt{2}} \int_{x^2}^2 f(x,y) \, dy \, dx.$$

6pt c. Evaluate
$$\iint_D y^{3/2} \cos(x\sqrt{y}) dA$$
.
Use the order of integration that you think is most suitable.

Solution:

It is more convenient to integrate w.r.t. x first:

$$\begin{split} \int_{y=1}^{2} \int_{x=0}^{\sqrt{y}} y^{3/2} \cos(x\sqrt{y}) \, dx \, dy &= \int_{y=1}^{2} [y \sin(x\sqrt{y})]_{0}^{\sqrt{y}} \, dy \\ &= \int_{1}^{2} y \sin(y) \, dy \\ &= [-y \cos(y)]_{1}^{2} + \int_{1}^{2} \cos(y) \, dy \\ &= -2 \cos(2) + \cos(1) + \sin(2) - \sin(1). \end{split}$$