Exam Reasoning and Logic (TI1306), 9:00 - 10:30

• Hint: First consider what would be the correct answer for a multiple choice question and then find that answer in the options given.

Multiple choice questions (1 point for each question)

1. If P and Q are properties of pairs of integers, in what way can you prove this theorem?

Theorem. For all $x \in \mathbb{Z}$ there exists a $y \in \mathbb{Z}$ so that $P(x,y) \to Q(x,y)$.

- A. Take a random $x \in \mathbb{Z}$ and find a $y \in \mathbb{Z}$ (potentially dependent on x) for which it holds that from the assumption that P(x,y) does not hold, it follows that Q(x,y) does not hold either.
- B. Find a $y \in \mathbb{Z}$ and show for a random $x \in \mathbb{Z}$ that P(x,y) follows from the assumption of Q(x,y).
- C. Take a random x and y in \mathbb{Z} and show that Q(x,y) follows from the assumption of P(x,y).
- D. Take a random $x \in \mathbb{Z}$ and find a $y \in \mathbb{Z}$ (potentially dependent on x) for which you show that from the assumption that Q(x,y) does not hold, it follows that P(x,y) does not hold.
- 2. If you want to prove the following theorem by mathematical induction, what do you have to do during the inductive step?

Theorem. For all integers $n \ge 1$ it holds that: $6 \mid (n^3 - n)$.

- A. Find an integer k for which an integer a exists such that $(k^3 k) = a \cdot 6$ holds, and show that for a random integer b it holds that $((k+1)^3 (k+1)) = b \cdot 6$.
- B. Show for a random integer k that if there exists a random integer a so that $((k+1)^3 (k+1)) = a \cdot 6$ holds, there exists an integer b so that $(k^3 k) = b \cdot 6$ holds.
- C. Show that if it holds that when n=1, there exists an integer a so that $(n^3-n)=a\cdot 6$, then there also exists an integer b so that $((n+1)^3-(n+1))=b\cdot 6$.
- D. Show that if there exists an integer a such that $(k^3 k) = a \cdot 6$ holds for a random integer k, there also exists an integer b such that $((k+1)^3 (k+1)) = b \cdot 6$.
- 3. If A, B and C are sets in the universe U, and $D = ((A \cup B)^c \cap (C A))$, which of the following options is **not** true?
 - A. $(A \cap B) \subseteq (C D)$.
 - B. $D \subseteq B^c$.
 - C. $(A \cap B) \cap D = \emptyset$.
 - $\mathsf{D.}\ C^c\subseteq D^c.$
- 4. If X, Y, Z and W are sets, how can you prove the following statement "If $X \subseteq Y$, then $Z \subseteq W$ "?
 - A. By showing that $Z \subseteq X$ and that $Y \subseteq W$.
 - B. By showing that $Y \subseteq Z$ and that $W \subseteq X$.
 - C. By showing that $X \subseteq Z$ and that $Y \subseteq W$.
 - D. By showing that $Z \subseteq X$ and that $W \subseteq Y$.
- 5. Let A and B be sets for which it holds that $A \subseteq B$. Which of the following can we **not** say with certainty?
 - A. If $B = \emptyset$ then $A = \emptyset$.
 - B. |A| < |B|.
 - C. If $A \neq \emptyset$ then $B \neq \emptyset$.
 - $D. (A B) = \emptyset.$

6. The following argument does not hold. Which sets can be used for a counterexample?

Argument. For all sets A and B it holds that: $2^A \cup 2^B = 2^{A \cup B}$.

- A. $A = \emptyset$ and $B = \{a, b\}$.
- B. $A = \{a, b\}$ and $B = \{a\}$.
- C. $A = \{a\} \text{ and } B = \{b\}.$
- D. $A = \{\emptyset\}$ and $B = \emptyset$.
- 7. Consider the directed graph which corresponds to the (binary) relation R on a set A. If it is given that relation R is reflexive and is not symmetric, which of the following must hold?
 - A. (i) If there is an edge from a vertex to another vertex, there is no edge the other way, and (ii) there is an edge from every vertex to itself.
 - B. (i) Not all vertices have an edge to themselves, and (ii) if there is an edge from a vertex to another vertex, there is also an edge the other way.
 - C. (i) There are no edges between pairs of vertices, but (ii) every vertex has an edge to itself.
 - D. (i) There exists an edge from a vertex to another vertex, without an edge going the other way, and (ii) every vertex has an edge to itself.
- 8. Consider the following relation T on \mathbb{Z} : A pair $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ is an element of T if and only if $x \mid 2y$. Which of the following is true?
 - A. The relation T is reflexive and is symmetric.
 - B. The relation T is reflexive and is not symmetric.
 - C. The relation T is not reflexive and is symmetric.
 - D. The relation T is not reflexive and is not symmetric.
- 9. The functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given as $f(x) = 3x^3 + 1$ and $g(x) = 2x^2 + 6x 5$. Which of the following is true?
 - A. The function f is one-to-one and the function g is one-to-one.
 - B. The function f is one-to-one and the function g is not one-to-one.
 - C. The function f is not one-to-one and the function g is one-to-one.
 - D. The function f is not one-to-one and the function g is not one-to-one.
- 10. Consider the functions f and g again from the previous question (9). Which of these statements is true?
 - A. The function f is onto and the function g is onto.
 - B. The function f is onto and the function g is not onto.
 - C. The function f is not onto and the function g is onto.
 - D. The function f is not onto and the function g is not onto.

Open questions

1. Consider the following arguments, where 2^X is the power set of the set X. (To make things clear: Epp writes 2^X as $\mathscr{P}(X)$ in her book.)

Argument (I). For all sets A and B it holds that: $2^{A-B} \not\subseteq (2^A - 2^B)$.

Argument (II). For all sets A and B it holds that: $(2^A - 2^B) \not\subseteq 2^{A-B}$.

Argument I does hold, and argument II does not hold.

- (a) (1 point) Give for sets $C = \{0,1\}$ and $D = \{1\}$ the sets 2^{C-D} and $(2^C 2^D)$ as an enumeration of elements (so in 'set-roster notation').
- (b) (2 points) Give a proof for argument I. Explicitly note the proof techniques you use and explain all your steps. (You get the points for this question if your proof shows your *knowledge* of this matter.)
- (c) i. (1 point) Give a counterexample which shows that argument II does not hold.
 - ii. (1 point) Explain clearly and precisely how you prove the invalidity of the argument using your counterexample.
- 2. (5 points) Prove using mathematical induction that for all integers $n \ge 1$ it holds that: $\sum_{i=1}^{n} (i \cdot i \, !) = (n+1) \, ! -1$.

Hint: Set up your proof such that it shows your *insight* in the steps of a proof by induction: The proof which you deliver should show indubitably that you understand how and why such a proof *works*! Give ample explanations and comments.