Midterm Reasoning and Logic (TI1306)

• The use of the book, notes, calculators or other sources is **strictly prohibited**.

Multiple choice questions

- 1. Which formula shows that both p and q are necessary for r?
 - A. $((p \land q) \rightarrow r)$.
 - B. $(\neg (p \land q) \lor \neg r)$.
 - C. $(\neg r \lor (p \land q))$.
 - D. $(r \to \neg (p \land q))$.
- 2. Suppose you create a truth table for A and B, both formulas in propositional calculus, and have a look at the columns below the main connectives of A and B. When do we know **for sure** that $A \equiv B$ is true?
 - A. When there is a T in every row under B if there is a T in the same row under A.
 - B. If there is no row for which there is an F under A and a T under B.
 - C. If there is a T in every row under A and a T in every row under B.
 - D. If there is no row in which there is only a T under A or B.
- 3. XOR (the exclusive OR) $(p \oplus q)$ is equivalent with the **negation** of:
 - A. the bi-implication $(p \leftrightarrow q)$.
 - B. the conjunction $(p \wedge q)$.
 - C. the NAND $(p \mid q)$.
 - D. the implication $(p \rightarrow q)$.
- 4. If p and q are propositions, what is the right way to prove that $(p \to q)$ is true?
 - A. Assume p is true. (Assume q is true.) This means that $(p \to q)$ is true. QED
 - B. Assume q is true. (Now show that $\neg p$ is true) This means that $(p \to q)$ is true. QED
 - C. Assume q and $\neg p$ are true. (Now deduce a contradiction) This means that $p \to q$ is true. QED.
 - D. Assume $\neg q$ is true. (Deduce that $\neg p$ is true.) This means $(p \rightarrow q)$ is true. QED.
- 5. Suppose $(\neg p \lor q)$ is true, $(q \to \neg r)$ is true, and r is true. What can we conclude?
 - A. $(p \land \neg q)$ is true.
 - B. $(p \rightarrow \neg q)$ is true.
 - C. $(\neg p \land q)$ is true.
 - D. $(\neg p \rightarrow q)$ is true.
- 6. Looking at the truth tables of formulas A, B, C in propositional calculus, when do you know for **sure** that the argument A, B : C is **not** logically valid?
 - A. If there is a T under C in all rows where there is an F under A and B.
 - B. If there is not a row for which there is a T under A, B and C.
 - C. If there is an F under C in all rows where there is a T under A or B.
 - D. If there is a row with a T under A and B, and an F under C.
- 7. Simon and Charles are students in Delft. When can they know for sure that the next statement is **false**? "If there exists a student in Delft without a bicycle, then all students in Delft have a car."
 - A. If Simon does not have a bicycle, but Charles has a car.
 - B. If Charles does not have a bicycle, and also no car.
 - C. If Charles has a bicycle, and Simon a car.
 - D. If Simon has a bicycle, but not a car.

- 8. If P(x,y) is a property of a pair of two integers, how can we prove the next statement? "For all integers x there exists an integer y such that P(x,y) is true.
 - A. Find an integer x such that P(x,y) is true for an arbitrary integer y.
 - B. Take an arbitrary integer x. Find an integer y such that P(x,y) is true.
 - C. Find an integer x, and an integer y such that P(x,y) is true.
 - D. Take arbitrary x and y, and show that if P(x, y) is true, then x and y cannot be integers.
- 9. How can we show that the statement in question 8 is false?
 - A. Find an integer x and an integer y such that P(x, y) is false.
 - B. Take an arbitrary integer x, and find an integer y such that P(x,y) is false.
 - C. Find an integer x, such that P(x,y) is false for an arbitrary integer y.
 - D. Take arbitrary integers x and y, and show that P(x,y) is false.
- 10. Which of the formulas below shows that there exists **exactly one** object with property P?
 - A. $\exists x (P(x) \land \forall y (P(y) \rightarrow (x = y)))$
 - $\mathsf{B.}\ \exists x \forall y (P(x) \land (P(y) \rightarrow \neg (x=y)))$
 - C. $\exists x (P(x) \land \exists y (P(y) \rightarrow \neg (x = y)))$
 - D. $\exists x \exists y ((P(x) \land P(y)) \rightarrow (x = y))$

Open questions

1. Suppose we have the following argument.

Argument. $((p \land q) \rightarrow \neg r), (p \lor \neg q), (\neg q \rightarrow p) : \neg r.$

- (a) (2 points) Create a truth table to investigate if the argument is logically valid or not. (You can use either 0/1 or T/F. Order the rows in a systematic manner in any case.)
- (b) (1 point) Is the argument valid?
- (c) (1 point) Explain clearly why your answer at question b follows from your truth table at question a. Give numbers to all relevant columns in the truth table and refer to these numbers in your explanation.
- 2. Suppose we have the following arguments.

Argument (I). For all x and y: if both x and y are irrational, $x \cdot y$ is also irrational.

Argument (II). For all integers n: if n^3 is even, then n is even.

- (a) Argument I is not valid.
 - i. (1 point) Give a counterexample which shows that argument I is not valid. (Tip: in the lecture a famous irrational number came by.)
 - ii. (1 point) Explain clearly how your counterexample shows that the argument is not valid.
- (b) (2 points) Argument II is valid. Give a proof. Clearly justify the steps in your proof. Alternate these steps with an explanation of what should be proven. (Tip: contrapositive.)