DELFT UNIVERSITY OF TECHNOLOGY TU D If
Faculty of Electrical Engineering, Mathematics and e t

Computer Science

TI1206 Object-Oriented Programming (computer exam)
November 2nd, 2016, 13:30-16:30 (total duration: 3 hours)

Exam created by dr. A. Zaidman and checked by dr. G. Gousios

You can make use of the following during this exam:
e Javain Two Semesters (Charatan & Kans)
e The slides from the lectures, either printed on paper or available online
through Blackboard + notes
e The Java API document (javadoc) that is available through Blackboard
(Blackboard = TI1206 = Assignments = Java 1.8 API)

This exam contains 1 assignment (10 points) (total exam: 5 pages).
—> the detailed scoring roster is on page 5

Log into the computer with the following:
Login: ewi_ti1200
Paswoord: Welkom(1

HINT 1: Read the entire assignment and only then start

implementing

HINT 2: Look at the last page to get an overview of how your
score is built up for this exam.

HINT 3: It might be that jUnit 4.0 is not in your Eclipse build

path by default. If you add a unit test case through the
“New” jUnit wizard, then Eclipse will notice that jUnit is
not in the build pat hand Eclipse will directly you tot he
build path menu. Go to the “Libraries” tab, click “Add
Library” and Eclipse will suggest to add jUnit.

A few hints:

- Your program must compile (fail to compile == fail this exam)

- When your program is finished, use the 7Zip program to zip your files.
Specifically, make a zip file of your sre¢ folder (the folder that contains your
Java files) when your assignment is ready. Give the zip file the following
name <studentnumber>.zip, so for example 12121212.zip. Please also put the
inputfile into this zip. The class files are not necessary.

- The workspace directory of Eclipse is located on the H: drive. Use the 7Zip
program to go to the H: drive to zip your assignment (do not try to zip your
files through Windows Explorer, this might not work).




- Please, do not use specific packages but rather use the default package (this
makes correcting the exam that much easier for us) = if you do use a specific
package, you will lose 1 point.

- Upload the zip file containing your solution through Blackboard = TI1206 -
Assignments = Exam November 2nd, 2016. At that location, you will also
find the inputfile that you should use for the exam assignment.

- All software present on the computer can be used.

- The network has been disabled so that you can only access Blackboard.

- Mobile phones remain in your backpack or coat and will not appear on the
table. You should switch off your phone.

- If you make an attempt at fraud or commit fraud, you will be punished.

Apple is looking to extend its product range. You’ve been asked to prepare a new
software system that can easily accommodate this new range of products. As Apple is
very much aware that in the time given, you can only produce a prototype application,
it asks you to focus your implementation on their most successful iOS products,
namely the iPhone and the iPad. There is a clear aim to later integrate their Mac line
of computers, iPod Touch and Beats audio products. Do take this into consideration!

Specifically, Apple gave you the following file format and wants you to develop an
application around it.

An example of such a file looks as follows:
(obviously, you are not allowed to change the file format in any way!)

IPHONE 7, 4.7, Al1@, GSM, JET BLACK, 32GB, TRUE, 7@e
IPAD AIR 2, 9.7, A8, TRUE, SILVER, 64GB, 406

The complete file apple.txt is in so-called CSV (Comma Separated Value) format and
is available through Blackboard (the exception to this CSV format being that there is
no comma after the first element (IPHONE/IPAD)).

The order of the properties (model, screensize, processor, ...) is fixed. The properties
per element iPhone, iPad are listed below:

An iPhone is characterized by:
- A model name
- A screensize
- A processor
- A type of modem, either GSM or CDMA
- Acolor
- The amount of memory
- The presence of 3D Touch technology
- The price

An iPad is characterized by:
- A model name
- A screensize
- A processor
- The presence of 4G, rather than only wifi




- Acolor
- The amount of memory
- The price

Apple asks you to design and implement a program that:

- Reads in the file apple.txt

- Output the entire catalogue to screen

- Sort the entire catalogue according to type (so first all iPhones, then all iPads)
or price (from low to high)

- Allows to add new configurations of existing products (e.g. with higher
capacity memory or new colors)

- Allows to write to file all product information (preserving the file format!).

- Write an equals() method for each class (except for the class that contains the
main() method)

- To enable user interaction, please provide a command line interface with
System.out.*. This interface should look like:

Please make your choice:
1 - Show the entire Apple catalogue
2 - Add a new iPhone

3 - Add a new iPad
4 - Show the entire Apple catalogue sorted by product
5 - Show the entire Apple catalogue sorted by price (low = high)
6 - Write to file
7 - Stop the program
Option 1

All products are shown on screen in the following format:

Apple iPhone 7 with 32GB of memory
with an Al10 processor and 4.7 inch screen
700 euros

Apple i1iPad Air 2 with ©4GB of memory
with an A8 processor and 9.7 inch screen
having WiFi and 4G technology
400 euros

Option 2 & 3
- Through questions you ask the user to fill in all the necessary fields that
compose an iPhone (Option 2) or iPad (Option 3). Use System.in and have a
look at the example program 7.6 on page 178 of the 3rd edition of the book.

Option 4&5
- Use the same file format as in Option 1 to show the catalogue sorted according
to model (Option 4) or price (Option 5).
- Please note that both sorting options need to be implemented with a
Comparator (see later on in this assignment for more details)




Option 6
The data should be written to file, in the same format so that the application can read
in the file again!

Option 7
The application stops.

Some important things to consider for this assignment:

- Think about the usefulness of applying inheritance.

- When writing to the file apple.txt, the old version of the file should be
overwritten.

- The filename apple.txt should not be hardcoded in your Java program.
Please make sure to let the user provide it when starting the program (either as
an explicit question to the user or as a “‘command line input™)

- Write unit tests (Jook at how your score for this exam is built up at the very
end of this document)

Other things to consider:
- The program should compile
- Fora good grade, your program should also work well, without exceptions.
Take care to have a nice programming style, in other words make use of code
indentation, whitespaces, logical identifier names, etc. Also provide javadoc
comments.

Sorting for options 4 and 5 in more detail

Apple is asking you to implement two ways to sort their catalogue, namely by product
(which product comes first doesn’t matter) and by price (from low to high). It might
very well be that later on, Apple wants you to implement other types of sorting as
well, that is why a flexible way of sorting is important.

Sorting needs to be done with a Comparator. While the concept of a Comparator
might be new to you, everything you need to understand this concept has been
covered during the lectures. The Java API might also help.

(mind you, implementing sorting in a different way will not contribute to your grade)

Furthermore, sorting can be computationally intensive, certainly if Apple’s product
range continues to grow. That is why you should also try to have the sorting done
with a thread so that while the catalogue is being sorted, other stuff can still be done.
An important piece of advice here: make sure that you do not copy the datastructure
containing all products to sort it (work on the “original” one) and make sure that new
iPhones or iPads cannot be added during sorting.

Hint: even if you are not able to implement the sorting in the short period of time that
you have, you can still implement the multi-threading. In that case, have a separate
thread print “Sorting to be implemented™ to the screen.




Overview of the composition of your grade (total: 10)

2.75 for compilation; if it doesn’t compile = final score = 1
1 for a well thought-out application of inheritance

o Other criteria: are you using inheritance and polymorphism in the right
way, 1s the functionality correctly distributed over the inheritance
hierarchy

0.5 for correctly implementing equals() methods in all classes except for the
class containing the main()

0.7 for implementing reading in a file (functioning code that leads to exception
still gives part of the score)

0.7 for writing to a file (functioning code that leads to exception still gives part
of the score)

0.5 for nicely styled code. Aspects being considered:

o Length and complexity of methods
o Length of parameter lists

o Well-chosen identifier names

o Whitespace, indentation, ...

0.5 for a well-working textual interface (including option 1, which prints all
trains to screen)

0.5 for not hardcoding the filename

1.1 for jUnit tests

o 0.5 for testing the class iPhone (depending on how well you test, you
get a score between 0.0 and 0.5)

o 0.6 for testing all other classes (except the class that contains main(),
you also get a score between 0.0 and 0.6 depending on how well you
test)

o Do not use files in your tests! (although you can create a String with
(part of) the content of a file to test reading in...)

1 for implementing threads

o 0.5 for implementing the thread corrrectly
o 0.5 for synchronization

0.75 for implementing sorting with a Comparator

There is a 1 point deduction if you do not work in the default package. So work
in the default package!




