Test 1 Mathematical Structures TW1010 Wednesday October 3, 2018, 9:00-10:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+4)/4.

1a Write down the truth table for the expression $(p \lor q) \Rightarrow (p \land q)$.

3

Solution. The table is given by

p q	$(p \lor q) \Rightarrow (p \land q)$			
\overline{TT}	Т	Т	Τ	
TF	T	\mathbf{F}	\mathbf{F}	
FT	Т	F	\mathbf{F}	
FF	F	Τ	F	

1b Is this expression a tautology? (Yes/No, because ...)

1

Solution. No, because in the column under the implication giving the truth value of the entire statement there are not only T's. \Box

2 Write down the negation of

4

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall y \in \mathbb{R} : |y - 1| < \delta \Rightarrow |y^2 - 1| < \epsilon$$

in simplified form (the negation symbol itself is not allowed in your answer). You only have to give your answer, no explanation required.

Solution.

$$\exists \epsilon > 0 : \forall \delta > 0 : \exists y \in \mathbb{R} : |y - 1| < \delta \land |y^2 - 1| \ge \epsilon.$$

3 Let A, B, and C be sets. Show that $(A \cap B) \setminus C = A \cap (B \setminus C)$.

9

Solution. Suppose $x \in (A \cap B) \setminus C$. Then $x \in (A \cap B)$ and $x \notin C$. As $x \in A \cap B$ we have $x \in A$ and $x \in B$. Since $x \in B$ and $x \notin C$ we have $x \in B \setminus C$. As $x \in A$ and $x \in B \setminus C$ we have $x \in A \cap (B \setminus C)$. Therefore $(A \cap B) \setminus C \subseteq A \cap (B \setminus C)$.

Now suppose $x \in A \cap (B \setminus C)$. Then $x \in A$ and $x \in B \setminus C$. Thus $x \in B$ and $x \notin C$. As $x \in A$ and $x \in B$ we have $x \in A \cap B$. As $x \in A \cap B$ and $x \notin C$ we conclude $x \in (A \cap B) \setminus C$. Thus $A \cap (B \setminus C) \subseteq (A \cap B) \setminus C$.

These two inclusions prove the equality of $(A \cap B) \setminus C = A \cap (B \setminus C)$.

	4a Show that R is an equivalence relation.	8
	 Solution. We need to show three properties Reflexivity. Let (a, b) ∈ N × N be an arbitrary point. Then ab − ab = 0 = 2 · 0 is of the desired form and thus (a, b)R(a, b) holds. Symmetry. Suppose (a, b)R(c, d) holds. Then ab − cd = 2k for some k ∈ Z. But then cd − ab = −2k = 2 · (−k) and as −k ∈ Z as well, we see that (c, d)R(a, b). Transitivity. Suppose both (a, b)R(c, d) and (c, d)R(e, f) hold. Then ab−cd = 2k and cd − ef = 2l for some k, l ∈ Z. But then ab − ef = (ab − cd) + (cd − ef) = 2k + 2l = 2(k + l). As k + l ∈ Z it follows that (a, b)R(e, f) holds. As the relation is reflexive, symmetric and transitive we find that it is an equivalence relation. 	
	4b Determine the equivalence class $E_{(3,2017)}$ (that is, describe the elements of the class in as simple a way as possible).	2
	Solution. The equivalence class of $(3,2017)$ consists of all points which are in relation to $(3,2017)$. Thus $(a,b) \in E_{(3,2017)}$ if $(a,b)R(3,2017)$, that is, if $ab-3\cdot 2017=2k$ for some $k \in \mathbb{Z}$. This means that ab must be odd $(2k$ is even, and $3\cdot 2017$ is odd). This happens if and only if both a and b are odd. Thus the equivalence class consists of all those points (a,b) with both a and b odd.	
5	Give the definition of the Cartesian product $A \times B$ of two sets A and B .	2
	Solution. The Cartesian product $A \times B$ is the set of all ordered pairs (a,b) with $a \in A$ and $b \in B$.	
6	Give an example of a surjective function $f: \mathbb{R} \to [3, \infty)$. Be sure to show this is a good example, by showing that the values of the function are always in the codomain, and that the function is indeed surjective.	5
	Solution. For example $f(x) = x^2 + 3$.	
	As all squares are positive we have $x^2 + 3 \ge 3$ and thus the function is well-defined (the results are all part of the co-domain $[3, \infty)$.	
	Moreover if $y \in [3, \infty)$, then take $x = \sqrt{y-3}$ (note that $y-3 \ge 0$). Then $f(\sqrt{y-3}) = (\sqrt{y-3})^2 + 3 = y - 3 + 3 = y$, and thus f is surjective.	
7	Write $\bigcup_{n=1}^{\infty} [1/n^2, 3+1/n]$ in the form of either a singleton set (a set containing one element), an interval, or a union of a finite number of singleton sets and intervals. You only have to give the answer, no explanation required.	2
	Solution. $(0,4]$.	

4 We define the relation on $\mathbb{N} \times \mathbb{N}$ as (a,b)R(c,d) iff ab-cd=2k for some $k \in \mathbb{Z}$.