

Faculty EEMCS
Mekelweg 4, 2628 CD Delft

Exam part 2 Real Analysis (TW2090) 23-1-2018; 9.00-11.00 Teacher M.C. Veraar, co-teacher K.P. Hart.

1. Let S be a set.

(4) a. Complete the following definition: a set $A \subset \mathcal{P}(S)$ is called a σ -algebra if

Let I be an index set and assume that for each $i \in I$, A_i is a σ -algebra on S.

- (6) b. Show that $\bigcap_{i \in I} A_i$ is a σ -algebra.
 - 2. Let λ be the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $f: \mathbb{R} \to [0, \infty)$ be given by $f(x) = e^{-x^2} \sin^2(x)$.
- (7) a. Prove that f is integrable

Define $\nu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ by $\nu(B) = \int_B f \, d\lambda$.

- (8) b. Show that ν is a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- (10) c. Let $g: \mathbb{R} \to [0, \infty)$ be a measurable function. Show that $\int_{\mathbb{R}} g \, d\nu = \int_{\mathbb{R}} g f \, d\lambda$. *Hint:* First consider a simple function $g: \mathbb{R} \to [0, \infty)$.
 - 3. Let (S, \mathcal{A}, μ) be a measure space.
- (6) a. Let $(A_n)_{n\geq 1}$ be a sequence of sets in \mathcal{A} . Show that $\mu\Big(\bigcup_{n\geq 1}A_n\Big)\leq \sum_{n\geq 1}\mu(A_n)$.

For each $n \ge 1$ let $f_n : S \to \mathbb{R}$ be a measurable function. Assume that there exists an $N \in \mathcal{A}$ such that $\mu(N) = 0$ and $f_n \to 0$ pointwise on N^c . For each $n, j \ge 1$ define $A_{n,j} = \bigcup_{m \ge n} \{s \in S : |f_m(s)| \ge 1/j\}$.

(6) b. Prove that for each $j \ge 1$ one has $\mu(\bigcap_{n>1} A_{n,j}) = 0$.

From now on assume $\mu(S) < \infty$ and $\varepsilon > 0$.

- (6) c. Show that for each $j \geq 1$ there exists an n_j such that $\mu(A_{n_j,j}) \leq \frac{\varepsilon}{2^j}$ Hint: Use a convenient theorem for a decreasing sequence of sets from the lecture notes. Let $B := \bigcup_{j>1} A_{n_j,j}$ where n_j is as in (c).
- (6) d. Show that $\mu(B) \leq \varepsilon$ and explain why $f_n \to 0$ uniformly on B^c .
- (20) 4. State and prove the dominated convergence theorem.
 - 5. Let $f:[0,2\pi)\to\mathbb{R}$ be defined by $f(x)=\mathbf{1}_{[\pi,2\pi)}(x)$.
- (3) a. Calculate the $L^2(0, 2\pi)$ -norm of f.
- (4) b. Show that $s_n(f): [0, 2\pi] \to \mathbb{C}$ (the *n*-th partial sum of the Fourier series of f) is given by $s_n(f) = \sum_{|k| \le n} c_k e_k$ with $c_0 = 1/2$, $c_k = 0$ if $k \ne 0$ is even, and $c_k = \frac{i}{\pi k}$ if k is odd.
- (4) c. Calculate $\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$ using (a), (b) and Parseval's identity.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

 $Grade = \frac{Total + 10}{10}$

and rounded in the standard way.

2. a. Note that f is continuous and hence measurable. To prove that f is integrable by a theorem from the lecture notes we note that

$$\int_{\mathbb{R}} |f| \, \mathrm{d}\lambda = \int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x$$

Since $|f(x)| \le e^{-x^2} \le \max\{1, e^{-|x|}\}$, by the properties of the Riemann integral we can estimate

$$\int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x = \lim_{t \to -\infty} \int_{t}^{-1} f(x) \, \mathrm{d}x + \int_{-1}^{1} f(x) \, \mathrm{d}x + \lim_{t \to \infty} \int_{1}^{t} f(x) \, \mathrm{d}x$$

$$\leq \lim_{t \to -\infty} \int_{t}^{-1} e^{x} \, \mathrm{d}x + \int_{-1}^{1} 1 \, \mathrm{d}x + \lim_{t \to \infty} \int_{1}^{t} e^{-x} \, \mathrm{d}x = 2e^{-1} + 2 < \infty.$$

- 3. a. See lecture notes
 - b. We claim that $\bigcap_{n\geq 1}A_{n,j}\subseteq N$. Indeed, if $s\in\bigcap_{n\geq 1}A_{n,j}$, then for all $n\geq 1$ we have $s\in A_{n,j}$. From the definition of $A_{n,j}$ we obtain that for all $n\geq 1$ there exists an $m\geq n$ such that $|f_m(s)|\geq 1/j$. Therefore, $f_n(s)\nrightarrow 0$ and we can conclude that $s\in N$. From the claim we see that $\mu\Big(\bigcap_{n\geq 1}A_{n,j}\Big)\leq \mu(N)=0$.
 - c. Fix $j \geq 1$. From the definition it follows that $(A_{n,j})_{n\geq 1}$ is decreasing. Therefore, $A_{n,j} \downarrow \bigcap_{n\geq 1} A_{n,j}$. Since $\mu(A_{1,j}) \leq \mu(S) < \infty$, we can apply a theorem from the lecture notes to obtain $\mu(A_{n,j}) \to \mu\Big(\bigcap_{n\geq 1} A_{n,j}\Big) = 0$. Therefore, we can find n_j such that $\mu(A_{n,j}) \leq \frac{\varepsilon}{2^j}$.
 - d. Let n_j be as in (c). By the σ -additivity of μ (see (a)), we obtain

$$\mu(B) \leq \sum_{j \geq 1} \mu(A_{n_j,j}) \leq \sum_{j \geq 1} \frac{\varepsilon}{2^j} = \varepsilon.$$

Now if $s \in B^c = \bigcap_{j \geq 1} A_{n_j,j}$, then for all $j \geq 1$, $s \in A^c_{n_j,j}$. Therefore, for all $j \geq 1$ for all $m \geq n_j$, $|f_m(s)| < \frac{1}{j}$. Now if $\delta > 0$, then choosing $j \geq 1$ such that $1/j \leq \delta$, we find that for all $m \geq n_j$, for all $s \in B^c$, $|f_m(s)| \leq 1/j < \delta$.