TU Delft/Delft Institute Applied Mathematics/Applied Probability

Exam Advanced Probability TW 3560 10th April 2019, 13:30-16:30

Lecturer: Dr. Wioletta Ruszel

Second reader: Dr. Alessandra Cipriani

- The exam is a closed book exam. You may use a simple non-graphical calculator.
- All solutions should be well-documented and explained, otherwise full points will not be awarded.
- In the first part there are 5 questions. Every correct answer gives 1 point, you can reach maximally 5 points.
- The second part will be considered if in the first part the student scored more than 3 points. For the second part the points are distributed as follows:

	Exercise 1	Exercise 2	Exercise 3	Exercise 4
Points	1-1-1- 5	8	1-1-2-1-2	2-5

• The total number of points is 35. The grade is calculated in the following way:

grade = min
$$\left(\frac{1}{3.5}(\sharp points) + bonus point, 10\right)$$
.

Part I (5 P.)

Indicate which of the following statements are true and explain why. In case, compute the quantity which is asked.

- 1. Let $\{A_n; n \geq 1\}$ be a sequence of events. Then $\limsup_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$.
- 2. If X is a random variable on $(\Omega, \mathscr{F}, \mathbb{P})$, then for all $A \in \mathscr{F}$, we have that $X^{-1}(A) \in \mathscr{B}$, where \mathscr{B} is the Borel sigma algebra.
- (3.) Let $X_0, ..., X_n, ...$ be a sequence of i.i.d. random variables with $\mathbb{E}(X_0) = 0$ and $\mathbb{E}(X_0^2) = 2$, then by the weak law of large numbers:

$$\frac{\sum_{i=0}^{2^n-1} X_i}{2^n} \xrightarrow[n \to \infty]{} 0$$

in probability.

- 4. If a sequence of i.i.d. random variables $(X_n)_{n\geq 1}$ with mean 0 satisfies $\frac{1}{s_n^4}\sum_{k=1}^n \mathbb{E}(X_k^4) \xrightarrow[n\to\infty]{} 0$ where $s_n^2 = \sum_{k=1}^n \sigma_k^2$ and $\sigma_k^2 = \mathbb{E}(X_k^2)$ then $\frac{\sum_{k=1}^n X_k}{s_n} \xrightarrow{d} N(0,1)$ as $n\to\infty$.
 - 5. Let $f(x) = 2^{-x}$ and $X \sim Geo(0.5)$ is a geometric random variable, compute $\mathbb{E}(f(X))$.

Part II

Exercise 1 (8 P.)

- 1. Let X be a random variable with $\mathbb{P}(X>0)>0$. We will prove that there exists $\delta>0$ such that $\mathbb{P}(X > \delta) > 0$ by showing (a)-(c).
 - (a) Let $A = \{X > 0\}$. Find a sequence of events A_n such that $\bigcup_{n=1}^{\infty} A_n = A$.
- (b) Show that there exists $\epsilon > 0$ such that $\lim_{n \to \infty} \mathbb{P}(A_n) = \epsilon$. (c) Find $\delta = \delta(n)$ such that $\mathbb{P}(X > \delta) > 0$.
- 2. Let $X_1, X_2, ...$ be a sequence of independent random variables, all defined on the same probability space such that $\mathbb{E}(X_i) = 0$ and $\mathbb{E}(X_i^2) = 1$ for all $i \in \mathbb{N}$. Prove that

$$\mathbb{P}(X_n > n \text{ i.o. }) = 0.$$

Exercise 2 (8 P.)

Let $X_1, X_2, ...$ be a sequence of independent random variables, all defined on the same probabilit space, such that for all $n \in \mathbb{N}$: $\mathbb{P}(X_n = 1) = p_n$ and $\mathbb{P}(X_n = 0) = 1 - p_n$. Show that $X_n \to 0$ alm st surely as $n \to \infty$ if and only if $\sum_{n=1}^{\infty} p_n < \infty$.

Exercise 3 (7 P.)

Adam has N batteries available for an electrical device. Once the battery is empty he replaces it with another one. The lifetime L_i of one battery i is independent of the lifetime L_j of battery $j \ (i \neq j)$ and is exponentially distributed with mean 2 (rescaled out 100 hours, which means that the actual mean lifetime is 200 hours).

- 1. What is the probability density function of $L_1 + L_2$?
- $\stackrel{\sim}{\sim}$ 2. Let N be a random variable with sample space $\{1,2,3\}$ and distribution

$$\mathbb{P}(N=2) = \mathbb{P}(N=3) = \frac{1}{4}, \ \mathbb{P}(N=1) = \frac{1}{2}$$

independent of L_1, L_2, L_3 . What is $\mathcal{L}(X_N)$, the law of $X_N = \sum_{i=1}^N L_i$?

- \mathcal{L}_3 . What is the expected value of X_N ?
- 4. Give a non-trivial upper bound on the probability that the device works at least 1000 hours. - o Chubyster o
- 5. Berta has an analogous device and 2 batteries at home. What is the probability that Berta's device will work longer Adam's device with N batteries, distributed as in point (2)?

Exercise 4 (7 P.)

- ↑ ★ State the Theorem of Lindeberg-Lévy-Feller.
 - 2. Let $X_1, X_2, ...$ be a sequence of independent random variables such that $X_n \sim N(0, \sigma_n^2)$ for all $n \in \mathbb{N}$. Define $\sigma_n^2 = e^{-n}$ and show that the Lindeberberg conditions do not hold. Show that nevertheless, by appropriate rescaling, $S_n = X_1 + ... + X_n$ converges to a standard normal variable. Does it contradict the theorem of Lindeberg-Lévy-Feller?

Lo finite variaros, o