

Delft University of Technology Faculty EEMCS Van Mourik Broekmanweg 6, 2628 XE Delft

> Exam part 2 Real Analysis (TW2090) 22-1-2019; 13.30-15.30 Teacher M.C. Veraar, co-teacher K.P. Hart.

- 1. Let S be a set.
- (4) a. Complete the following definition: A family \mathcal{R} of subsets of S is called a ring if
- (4) b. Complete the following definition: A mapping $\mu: \mathcal{R} \to [0, \infty]$ is called *additive* if

From now on we assume that \mathcal{R} is a ring on S and $\mu: \mathcal{R} \to [0, \infty]$ is additive.

- (3) c. Prove that for $A, B \in \mathcal{R}$ with $\mu(A) < \infty$ and $A \subseteq B$ one has $\mu(B \setminus A) = \mu(B) \mu(A)$.
- (5) d. Prove that for $A, B \in \mathcal{R}$ with $\mu(A) < \infty$ one has $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$.
 - 2. Consider the following collection $\mathcal{B}_0 = \{(x, \infty) : x \in \mathbb{R}\}\)$ of subsets of \mathbb{R} .
- (6) a. Show that $\sigma(\mathcal{B}_0)$ contains all open intervals.
- (4) b. Use Lemma I (see next page) to show that every open set $O \subset \mathbb{R}$ is the union of countably many open intervals.
- (4) c. Show that $\sigma(\mathcal{B}_0) = \mathcal{B}(\mathbb{R})$.
 - 3. Let (S, \mathcal{A}, μ) be a measure space.
- (4) a. Complete the following definition: a function $f: S \to \mathbb{R}$ is called *measurable* if
- (4) b. Assume that for all $r \in \mathbb{R}$, $f^{-1}((r, \infty)) \in \mathcal{A}$. Use Lemma II (see next page) and 2c to deduce that f is measurable.

Let I be an index set (not necessarily countable!) and let for each $i \in I$, $f_i : \mathbb{R} \to [0, 2019]$ be continuous.

- (6) c. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \sup_{i \in I} f_i(x)$. Use (b) to prove that f is measurable.
 - 4. Let λ be the Lebesgue measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Let $f : \mathbb{R}^d \to [0, \infty]$ be a measurable function. For $h \in \mathbb{R}^d$ define the translation $f_h : \mathbb{R}^d \to [0, \infty]$ by $f_h(x) = f(x h)$.
- (4) a. Explain why f_h is measurable.
- (10) b. Show that $\int_{\mathbb{R}^d} f_h \, d\lambda = \int_{\mathbb{R}^d} f \, d\lambda$.
- (4) 5. a. State the monotone convergence theorem.
- (11) b. State and prove Fatou's lemma.
- (10) c. On \mathbb{R} consider the Lebesgue measure λ . Assume $f: \mathbb{R} \to \mathbb{R}$ is integrable. Use the dominated convergence theorem to show that $\lim_{n\to\infty} \|f\mathbf{1}_{[n,n+1]}\|_1 = 0$.
- (7) 6. Let $f, g: [0, 2\pi] \to \mathbb{R}$ be given by

$$f(x) = \frac{1}{2}x^2 - \pi x + \frac{1}{3}\pi^2$$
 and $g = \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{n^2} e_n$.

With the help of the integral identities (see next page) show that f = g in $L^2(0, 2\pi)$.

See also the next page.

Lemma I (Lindelöf) Let $A \subseteq \mathbb{R}^d$. For each $i \in I$ let $O_i \subseteq \mathbb{R}^d$ be open. If $A \subseteq \bigcup_{i \in I} O_i$, then there exists a countable $J \subseteq I$ such that $A \subseteq \bigcup_{i \in J} O_i$

Lemma II Let (S, A) and (T, B) be two measurable spaces and let $f: S \to T$. Suppose $\mathcal{F} \subseteq \mathcal{B}$ is such that $\sigma(\mathcal{F}) = \mathcal{B}$. If $f^{-1}(F) \in A$ for all $F \in \mathcal{F}$, then f is measurable.

Integral identities

$$\begin{split} &\int_0^{2\pi} x e^{-inx} dx = \frac{2\pi i}{n}, \quad n \in \mathbb{Z} \setminus \{0\}, \\ &\int_0^{2\pi} x^2 e^{-inx} dx = \frac{4\pi^2 i}{n} + \frac{4\pi}{n^2}, \quad n \in \mathbb{Z} \setminus \{0\}. \end{split}$$

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

 $Grade = \frac{Total + 10}{10}$

and rounded in the standard way.