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1 The Heat Equation

Let’s consider a rod. Let e(x,t) be the thermal energy at a point = at time ¢, A the surface
of the cross-section and Az be a small length. Then the heat energy between x and z+ Ax
at time ¢ is approximately e(x,t)AAz. The change of this energy is determined by the
flux ¢(x,t) per surface and the sum of sources in that region Q(x,t) in the following way:

ore(x, t) AAx = ¢(x,t)A — p(x + Az, t)A + Q(z,t) AAx.

This implies
ore(x,t) = —0,0(x,t) + Q(x,t)
by letting Az — 0. Now let u(x,t) denote the actual temperature at x at time ¢. Then
u is related to e via
e(z,t) = p(z)e(z)ulz, t),
where ¢ is the specific heat and p the density. Also, the heat flux is related to the
temperature and is given by

¢z, t) = —Ko(x)0pu(x, t),

where K is the thermal conductivity of the material, which is called Fourier’s law of heat
conduction. Now, if we substitue this in our equation we get

pcoy (1) = Oy (Kou) + Q.

If we assume () = 0 and the material parameters to be constant along the rod we obtain
u; = kug, with the thermal diffusivity k = Ic(—po.
It is still unclear how u behaves at the boundary. There are three cases

e If we prescribe a temperature at the boundary we get the condition u = « on the
boundary.

e If the boundary is insulated we get the condition u, = 0 on the boundary.

e If the rod is in contact with another material at the boundary there is a heat flux
which tries to equalize the temperature difference. So at 0 one gets for example
¢ = —H(u —up) with H > 0. But this means Kyu, = H(u —up) at 0. Note that
the sign switches at the other end.

In higher dimensions the heat equation takes the form u; = kAwu.

2 Laplace Equation

The Laplace equation describes the steady state of the heat or wave equation, namely
Au = 0. Functions satisfying the Laplace equation have the so called mean value property

1
u(z) 3B, Jopc u(y) dS(y).
This implies the maximum principle, which states that u attains its maximum on the
boundary of the domain. By this we can prove for example uniqueness of solutions. If
one imposes Neumann-conditions, then by the divergence theorem Su -ndS = 0 has to be
fulfilled for a solution to exist. Physically this means that there can only exist a steady
state when there is no outlow or inflow in the domain.



3 The Wave Equation

Suppose we have a string and let u(z,t) denote the vertical displacement of the string at
position x at time ¢. Furthermore let T'(x,t) denote the tension of the string at x,¢. Then
if we consider a small segment we get due to F' = ma the equality

po(x)Axdyu(x,t) = T(x + Az, t)sin0(x + Az, t) — T(x,t)sinb(x,t) + po(z)AzQ(z, 1),

where (z,t) denotes the angle of the string at z,t, po(z) the mass per length and Q(x,t)
body forces per unit mass. But then we can use the approximation d,u =~ sinf and let
Az tend to 0 to get

PoOut = 0p(T0pu) + po@.

If we assume ) = 0 and T = T constant (i.e. perfect elasticity, meaning 7" only depends

on the local stretching, and 6 small) we get the wave equation uy = c*u,, with ¢?(z) =

pOT&). If the string has uniform density c is a constant. In higher dimensions the wave

equation takes the form uy; = c?Au.
Here we can also impose different boundary conditions.

e If the string is fixed we have u = « at the boundary.

e If the end is free, meaning that it can move along a frictionless vertical track, we
can impose u, = 0 as the limiting case k — 0 of the next BC.

e Let’s suppose the left end of the string is attached to a spring-mass system obeying
Hook’s law with equilibrium ug, meaning myj = —k(y —ug) + 10, u(0,t). Note that
the sign of the Ty-term switches at the other end. Then letting m — 0 gives us with
y = u the BC Tyu, = k(u —ug) at 0. This corresponds to Newton’s law of cooling
and imposes the same physical sings.

4 Separation of Variables

For some problems we can separate the variables meaning we can assume a product form
solution u(x,t) = f(x)g(t). Then applying differentiation only affects f or g depending
on w.r.t. to which coordinate we differentiate. Then we can put everything depending on
x on one side and everything depending on ¢ on the other side. Since both terms are equal
they have to be constant. Thus we get a problem for  and a problem for ¢t. Then we can
solve the BVP (which is mostly in z) first and then the IVP which is mostly in ¢. Then
we get a product solution. Using the principle of superposition any weighted sum of these
product solutions satisfies the PDE and the initial condition can be used to determine
the weights. Separation of variables can be used several times in higher dimensions when
the domain is nice.

5 Fourier-Series

Suppose we have a function f on an interval [—L, L]. Then the Fourier-series of f is

defined as
ao—i—Zancos( ) Zb sin (mm)



with Fourier-coefficients
1 F
a =57 J_L f(z)dx
1 L
an =7 JL f(z) cos (?) dx

b, = %JLL f(z)sin (?) dx.

Fourier’s theorem states that when f is pw. smooth then the Fourier-series converges to
the periodic extension of f at its continuity points and to 1[f(z") + f(z~)] else. In this
case the Fourier-series is continuous iff f is continuous and additionally f(—L) = f(L).
If we are now on the interval [0, L] then we can extend f to a function on [—L, L] for
example in an odd or even way. In these cases the Fourier-coefficients a,, /b, respectively
are 0 and thus we obtain a sine/cosine-series instead. The remaining integrals reduce to
integrals from 0 to L by symmetry.

The Fourier-series of f can be differentiated term-by-term when it is continuous and f’
is pw. smooth. The Fourier series of a function u(z,t) can be differentiated term-by-term
w.r.t ¢ if the Fourier-coefficients are pw. smooth in .

6 Eigenfunction Expansion

To satisfy a PDE Lu = f with initial conditions and homogeneous BC one can expand u
in terms of eigenfunctions L¢,, = \,¢,. This will give an ODE for the Fourier-coefficients
a,(t), which can be solved. Alternatively (and also possible when there are nonhomoge-
neous BC) one can integrate for Fourier-coefficients and then apply Green’s identity to
retrieve an ODE for the Fourier-coefficients.

7 Sturm-Liouville Problems

A Sturm-Liouville problem is the BVP

(P9s)e + qd + Ao = 0

on [a,b] with a homogeneous Robin-BC. It is called regular when additionally p,o > 0,
also at a,b. Then we have that all eigenvalues are real and form a sequence converging
to 0. The eigenfunctions are unique (not necessarily in the periodic case for example),
complete with convergence as for Fourier-series and orthogonal w.r.t. o. Also the so-called
Rayleigh-quotient
b

[—pp9.]% + §, p(62)? — q¢* da

{* ¢20 do
is fulfilled for eigenvalues A and corresponding eigenfunctions ¢. To see many of these
properties the following considerations can be useful. If L = 0,pd, + ¢ is the differential
operator from the Sturm-Liouville problem then we get

A\ =

ulv —vLlu = u(pvy)e — v(pug) e = (u(pve))e — (V(pug))e = (pluv, — Vug))y.,
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which is called Lagrange’s identity. Integrating it yields Green’s formula, namely

J uL(v) — vL(u) dr = [p(uv, —vuy)]’.

a

The rhs vanishes if we have a regular Sturm-Liouville problem or periodic BC (with weight
p for the derivative) or a singularity condition and a regular condition at the other end.
In this case L is called self-adjoint, since SZ L(u)vdr = SZ L(v)udz. The adjoint operator
in general is an operator L* satisfying

a*

b
J uL(v) —vL*(u) do = [F(u,v)]’
Boundary conditions, which let the rhs vanish are called adjoint boundary conditions.
Green’s formula lets us conclude immediately orthogonality of eigenfunctions and real
eigenvalues. The Rayleigh quotient can be easily derived by multiplying the PDE with
¢, integrating both sides and using an integration by parts argument. Furthermore, the
smallest eigenvalue is the minimal value of the Rayleigh quotient. This can be used to
show that eigenvalues are non-negative or to give an upper bound for the smallest one.

8 The Helmholtz Equation

The higher dimensional analog of the previous section is given by the so-called Helmholtz-
equation A¢p = ¢ s.t. ap + bV -n = 0. Similar statements hold: For example A € R
and the sequence of EV converges to co. But unlike before there may be different EF to
the same EV. The EF are complete again and orthogonal, if they belong to different EV.
Also the Rayleigh quotient holds:

_ —§ oV -ndS+§|Vo|*dx
B {¢2dr '
In nice domains this problem can be treated by applying separation of variables multiple

times but this is not always possible. Analogously to the one-dimensional case we can
calculate

A

V- (uVv) =ulAv+Vu-Vu, and V- (vVu)=vAu+ Vv Vu,
which yields again Lagrange’s identity
V- (uVv —ovVu) = uAv — vAu.
Applying the divergence theorem gives us Green’s formula

JUAU —vAudr = JUVU —oVudS.

Orthogonality of EF and A € R can be shown with the same techniques as in one dimen-
sion.



9 Non-Homogeneous Problems

There are several tricks to solve non-homogeneous problems. To get rid of constant, non-
homogeneous BC one can for example subtract the steady state solution and reduce to
homogeneous BC. If the BC are not constant one can subtract any function that does
fulfill the BC. This will lead to new inhomogeneities in the equation but removes the
non-zero BC.

Now If we have homogeneous BC but sources or sinks one can use the method of
eigenfunction expansion. This will lead to ODEs for the Fourier-coefficients which have
to be solved. The ODE will also contain the Fourier-coefficients of the source-function.
The homogeneous BC are necessary to justify differentiation of the Fourier-series.

To avoid this we can use a similiar approach using Green’s identity. Suppose we have
eigenfunctions ¢! + A, ¢, = 0 with homogenous Dirichlet conditions and we're looking for
a solution to u; = kug, + @, u(0,-) = A, u(L,-) = B with some IC. Then we can conclude
for the Fourier-coefficients b,, of u

g g S Ftmtnde = wkugn do = [(L)B() = 6,0 AW)
' fo @ d fo 02 d
But since on the RHS b,, appeared this implies
[0:(0)A(t) — ¢, (L) B(t)]
fo % dz

This can be solved by the variation of parameters.

b+ kX\b, = g +

10 Green’s Functions for Time-Independent Prob-
lems

Given a ODE L(u) = f with some BC for some Sturm-Liouville operator L. Then the
corresponding Green’s function is given as the solution to L(G(x,x,)) = d(z — xs) with
homogeneous BC. Then the solution u to the original problem can be determined using
Green’s formula to be

u(zg) = f w(z)o(x — xp) do = f G(z,xo) f(z) dx + [p(qu(x,xo))]Z,

where p is from L. The Maxwell reciprocity states now that G(xy,z2) = G(xa, x1) for all
x1, 2 and can be proven using Green’s formula.

11 How to determine a Green’s Function

One can determine a Green’s function directly from the defining differential equation.
If we consider for example L = ¢,, with Dirichlet-conditions at 0 and L, then we get
immediately 0,G(z,x¢) = H(x — z¢) + a. Integrating another time yields

ar +b T < g
(a+Dz+c z>m

G(z,x) = {
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where we can use that G should be continuous at xy to obtain azxg + b = (a + 1)x¢ + c.
This lets us conclude that b = x5 + 1 and thus we can insert this to get

axr + b T < Tg
(a+Dx+b—z0 >z

G(z,x0) = {

Now we can use the BC to obtain b = 0 as well as a = 22=L_ This lets us write down the

L
solution as
ro—L
Gl z0) = == T < Tg
y L0 zo .
TT—Xy X > X

Alternatively, one can also use an eigenfunction expansion to determine . For that let
L be an arbitrary Sturm-Liouville operator and ¢, A, corresponding eigenfunctions and
eigenvalues. Then if u should satisfy L(u) = f we can conclude for the Fourier-coefficients
Qn,

@ b
n d
f = L(u) = Z _anO')\ngbn = aq,= Sa f(xo)(bb (l’o) Zo
n=l _)\n Sa ¢721 dz
under the assumption A, # 0. Let’s write out u as
> LS @)oo E\ Gu(w0) ()
" = A AS¢2d

Thus, the sum under in the integral at the RHS gives us the Green’s function.

12 Fredholm Alternative

If 0 is an eigenvalue of the differential operator it may happen that a non-homogeneous
problem has no solution. To investigate this let w fulfill homogeneous BC, such that we
can differentiate under the sum to retrieve

0

L(u(x)) = Z — APy ()

n=1

for u(z) = 3,7 | and,(x). This will always be orthogonal to the EF corresponding to the 0
EV. Also, if f is orthogonal to that EF, then we can add arbitrary multiples of that EF to
u without changing L(u). Consequently, we have either 0 or co many solutions depending
on f being orthogonal to the O-EF or not. This is called the Fredholm alternative.

13 Generalized Green’s Functions

If 0 is an eigenvalue Green’s functions may not exist due to the considerations in the former
section. We will investigate how to avoid this problem. Let’s assume ¢(zq) # 0, then we
can’t solve L(G(z,x¢)) = 0(x — xp). Let’s instead solve L(G(x,z¢)) = d(z — x¢) + cp(x),
where ¢ gets chosen such that {(6(z —z9) + c¢(x))p(x) dz = 0. Then there exist solutions



and it can be shown that we can choose a solution, which still fulfills G(x, z¢) = G(zo, ).
If we do so we will get again

u(z) = J flzo)G(x, zo) dxg

as a solution to L(u) = f (if f is orthogonal to ¢).

14 Green’s Functions for Poisson’s Equation

Let’s consider the problem AG(x,xo) = §(x — () with homogeneous Dirichlet conditions.
It can be determined using eigenfunction expansion. Then if we are interested in the
problem Au = f and u = h on the boundary we can apply Green’s formula to obtain

u(z) = f w(@0)d(x — 20) dag — f F(0) Gz 0) davo + J h(20) Vi, G, 79) - n dS

On the whole domain we can give a more explicit description with the following consid-
erations. We expect G(z,z¢) to be radially symmetric around zy and write it therefore
G(z,z0) = G(r) with r = |z — xp|. Thus since AG = 0 for r # 0 we obtain that
10,(ro,G) = 0 (d=2). Integrating this twice yields G(r) = ¢ log(r) + co. We can assume
co = 0 for convenience. Using that the integral over any circle must be 1 we get by the
divergence theorem

1= JAG(m,xO) der = fVG(iL’,%O) -ndx = 2mro.G(r) = 21y,

meaning ¢, = % Analogous considerations for d = 3 give us G(x,xg) = 4_—#17“. This
allows us now to construct Green’s functions on other domains. For example if we impose
Dirichlet conditions on a half-space we can just add another point-charge of the opposite
sign there. For Neumann-conditions one can use the same sign of charge. We can do
the same thing for a circle by putting an opposite charged point-charge on on the line

connecting the midpoint and xy and adding some constant. This ansatz will give us the

Green’s function . | |
alr — xg
G =—1 — L
() = g ox (=50 )

. . . 2
with 7o = 20|, a the radius of the circle and zf = -y.

15 Fourier-Transforms

The Fourier-Transform of a function f(z) is defined by F(w) = & {*  f(x)e™*dz. The

inverse Fourier-Transform is given by f(z) = {~_ F(w)e ™“dw. A table can be found on
page 483. The Fourier-transform can be used on the whole domain to transform a PDE
into an ODE. In the Fourier-domain this can be solved and transformed back, which
gives the solution to the original problem. The method of images can be used to get
results on domains with suitable BC. We can also introduce the Fourier-Transform in
dimension 2, which takes the form F(w) = ﬁ $e f(x)e™*dx and its inverse is given by

f(x) = §zo F(w)em™*dw. A table is on page 513.
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16 Time-dependent Green’s Functions

If we have a differential operator (also in time) like L = d; — kA or L = Jy; — A
with some BC and initial condition the corresponding Green’s function is the solution to
L(G(x,t,xo,t9)) = 0(x — x0)d(t — to) with homogeneous BC. It describes the influence
of a source at xg,tg at time z,t. Thus we can demand the causality principle, meaning
G(z,t,x9,tg) = 0 when t < ty3. Also we demand the translation property, meaning
G(Z‘, t, Zo, to) = G((L’, t— to, Zo, 0)

For the heat equation we can apply Fourier-methods on the whole domain to get that
the solution to u; = kAu with initial condition f on R¢ is given by

1 % —lz—xq|?
G(:L‘, t, o, to) = m e 4k(t=tg)

for t > typ. On domains a Green’s function can be determined using the method of images.
For the wave equation we get first for L = d;; —c?A Green’s formula for the wave equation

to to
J fuL(v) —vL(u) dx dt = f [udyv — U&tu]ﬁ dx — ¢ J J(qu —oVu) -ndSdt
t1 t1

by applying Green’s formula to the time and spatial part separately. With that we can
derive a formula to construct a solution u to the wave equation with BC, IC and sources.
Similar things can be done for the heat equation only that the operator is not self-adjoint
since it contains only one time-derivative.

17 D’Alemberts Formula

Let’s investigate the wave equation uy = c*u,, on R. If we introduce w = u; — cu, and
v = u; + u, then these functions fulfill the first order PDEs w; + cw, = 0 and v; — cv, = 0.
It is easy to see that w = P(x—ct) and v = Q(x+ct) solve these equations. Consequently,
we get

2u; = P(x — ct) + Q(z + ct) and 2cu, = Q(z + ct) — P(x — ct),

which gives us u(z,t) = F(v — ct) + G(z + ct) by " = —£ and ¢G' = €. Note that
integration constants can be hidden in and F' or G. The sets on which x — ¢t resp. x + ct
are constant are called the characteristics of u since F' and G travel along these. Now if we
impose IC u(z,0) = f(z) and us(x,0) = g(z) we can use our given formula to determine

F and G, which gives us the formulas
[ [
F(z) = @— %L g(z)dx and G(z) = @ —i—%fo g(z) dz.
Inserting this in our formula for u gives us D’Alembert’s solution

flx —ct) + f(x+ ct) N 1 J”’”’Ct

u(z,t) = 5 % g(x)dz.

r—ct

If we want to use this result on a domain we have to be aware that our formulas for F
and G only work on the domain. Outside of this F' and G are still interesting since x + ct

9



can be arbitrary. One way to solve this is to use the boundary conditions to get a relation
between Fand G which will give us then F' and G outside of the domain. Alternatively,
one can also work with even or odd periodic extensions of f and g. If chosen properly the
solution will fulfill the desired BC.

18 The Method of Characteristics

Assume we have a first order PDE au; + bu, = c¢. Then if a curve (¢(s), z(s), u(s)) fulfills

t'(s) = a(z, t,u)
2'(s) = bz, t,u)

w(s) = c(x,t,u)

and its initial value is on the graph of the solution it will lie entirely on the solution graph.
We can choose for example s = 0 and £ = 0 under the assumption that the time-domain
begins in 0 as well. We can also parametrize our initial function f by some parameter .
Then for each initial value sy = 0, tg = 0, g = A and ug = f(\) we will get a curve in s.
Thus we will have a plane in (), s). When we can retrieve (), s) from (x,t) we found our
solution to the PDE.

19 Traffic Flow

Let’s assume we have a road with car density p and car velocity u(p). Then the traffic
flow is given by ¢(p) = pu(p). Conservation of cars reads then as

b
o | pla)de = afa,t) - a.)
which means d;p + 0,q = 0. If we define ¢(p) = 9,q(p), then we retrieve the quasilinear
PDE p; + ¢(p)p. = 0. Note that if only the PDE is given ¢ can be be obtained as the
anti-derivative of ¢, which will be important later when considering shock waves. To solve
the traffic flow problem we can apply the method of characteristics.

Let’s consider for example the problem p; + 2pp, = 0 with IC

3, <0
,0) = ’ .
Pz, 0) {4 x>0

Then the characteristics fulfill 2’(¢) = 2p. We impose the initial conditions tg = 0, o € R
arbitrary and py = p(xg,0) correspondingly. The solution is given by z(t) = x(0) + 2pot
since p is constant along these characteristics. We observe that at (x,t) = (0,0) there is
some space which is not filled by characteristics since right of it the characteristics travel
faster than left of it. The characteristics, which we will find in this space have to suffice
r = 2pt, which gives us p = & there. This is called fanlike characteristics.

If we consider the same problem with switched initial condition

4. <0
z,0) =4
Pl 0) {3 2> 0

10



the characteristics on the left are faster than the ones on the right instead. Thus a shock
wave will appear. The shock velocity is given by

gz, 1) — gz,
plat,t) = plxs,t)

We know that the denominator here is —1 already. Since ¢(p) = é, we have in the

enumerator —7 and in this case the shock wave travels with speed 7 to the right.

20 Laplace-Transforms

Similarly to the Fourier-Transform the Laplace-Transform transforms differential opera-
tions to algebraic operations and can thus be used to solve PDEs. Unlike the Fourier-
transform the Laplace-transform acts on functions defined on [0, ) and is thus usually
applied in the time variable. It is given by

£ - | " ptye .

A table with its properties can be found on page 612.

21 Uniqueness Proofs

Uniqueness of solutions for the heat and wave equation can be shown using energetic
methods. For the heat equation we can introduce

B(t) = %JUQ .

Differentiating, using the heat equation and the divergence theorem gives us that £ decays
in time, meaning that solutions are unique. Analogously for the wave equation we can

define

1
E(t) = 3 J02|Vu|2 + u? dz.

Differentiating, using the divergence theorem and applying the wave equation shows that
E' is constant in time, which gives uniqueness.

22 Interesting Examples

e One dimensional BVPs and properties p.66: Classification of resulting eigenfunc-
tions for a one-dimensional BVP.

e Laplace equation on a rectangle p.68: Split the problem in a problem with only one
non-zero BC and solve each of them separately. Then add them up.

11



e Laplace equation on a circular domain p.73: The circular Laplacian is given by Au =
%ﬁr(rﬁru) + r%&ggu. The initial resp. boundary conditions consist of a periodicity
condition along #, a boundedness condition at » = 0 and a given function along
the boundary of the circle. The radial problem is of the form r2G"(r) + rG'(r) —
AG(r) = 0 and gets solved by rational functions (and the logarithm for A = 0). The
boundedness condition tells us what G is appropriate.

e Example with Robin-BC p.201: We can’t compute the eigenvalues directly so we
approximate them with graphical techniques and get estimates and approximations
for them.

e Forced membranes p. 374: Apply the method of eigenfunction expansion to the
wave equation in 2 dimensions with a source term (). If the frequency of a periodic
forcing () coincides with the frequency of a mode of the membrane then the Fourier-
coefficient grows to infinity.

e Poisson’s equation on a rectangular domain p.382: We can decompose Poisson equa-
tion with non-homogeneous BC and source terms in a Laplace equation and a Pois-
son equation with homogeneous BC. The first one was solved above for simple
geometries. For the latter one, one can expand it in terms of the eigenfunctions and
gets then equations on the Fourier-coefficients. Instead, one can also try to tackle
both at once using Green’s formula for Af = @), f = o on the boundary:

J—f)\nqén dx = JQqﬁn dx + JaV(bn -ndS.
e Green’s function for a circle p.443: Using the ansatz

1 1 .
Gz, w0) = 5~ log (|7 = wo|) — 5 log (Jz — z5]) + ¢

with x§ = yz( yields proper constants v and ¢ using the BC.

e Application of the Laplace-Transform to the wave equation p.623: The Laplace
transform yields an ODE in space which can be solved using the BC as initial
condition. Transforming back via the table gives us the solution.

23 Things to know by Heart

The Robin-BC
u'(0) = Hu(0) and u'(L) = —Hu(L)

has in physical cases the sign H > 0. The regular Sturm-Liouville problem is given by

(p¢x)x + ng + )‘U¢ =0

with Robin-BC and p, o > 0 on the closed interval. Green’s Formula reads as follows

J uL(v) — vL(u) dz = [p(uv, — vuy)]?,

a
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where L = 0,(pd,) + q for this problem. In higher dimensions we have Green’s formula
given by

JuAv —vAudx = quv —ovVuds.
The Green’s function for the Poisson equation is given by % log(r) in d = 2 and ﬁ for

d = 3 with r = |x — x¢|. D’Alemberts form for solutions of the wave equation is given by
u(z,t) = F(x — ct) + G(x + ct). The shock velocity for traffic flow models is given by

24 Further tricks

Variation of Constants: Suppose we want to solve the problem f'(¢) + \f(t) = g(t).
Then we van multiply by e* to get 0;(e* f(t)) = e Mg(t). Then we can integrate.
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